perfsonar-mcp
An MCP server for perfSONAR that enables querying historical network measurements, discovering global testpoints, and scheduling active network tests. It provides tools for monitoring throughput, latency, and packet loss through integration with measurement archives and pScheduler.
README
perfsonar-mcp
MCP (Model Context Protocol) server for perfSONAR - Query measurements, discover testpoints, and schedule network tests.
🚀 Features
Measurement Archive Queries
- Query historical measurements with filters
- Get throughput, latency, and packet loss data
- Access raw time-series data with summaries
- Discover available measurement types
Lookup Service Integration
- Find perfSONAR testpoints globally
- Search by location (city, country)
- Locate pScheduler services for testing
Test Scheduling (pScheduler)
- Schedule throughput tests (iperf3)
- Schedule latency tests (owping)
- Schedule RTT tests (ping)
- Monitor test status and retrieve results
📦 Installation
pip install -e .
For development with additional tools:
pip install -e '.[dev]'
⚙️ Configuration
Required environment variable:
export PERFSONAR_HOST=perfsonar.example.com
Optional:
export LOOKUP_SERVICE_URL=https://lookup.perfsonar.net/lookup
export PSCHEDULER_URL=https://perfsonar.example.com/pscheduler
🏃 Usage
Local (stdio transport)
Standard MCP stdio transport for local AI clients:
python -m perfsonar_mcp
# or
perfsonar-mcp
Web Access (SSE/HTTP transport)
FastMCP enables web-accessible MCP server via SSE (Server-Sent Events) or HTTP:
# SSE transport (recommended for web)
export PERFSONAR_HOST=perfsonar.example.com
fastmcp run src/perfsonar_mcp/fastmcp_server.py --transport sse --host 0.0.0.0 --port 8000
# HTTP transport (alternative)
fastmcp run src/perfsonar_mcp/fastmcp_server.py --transport http --host 0.0.0.0 --port 8000
# Or use the convenience command
perfsonar-mcp-web
The server will be accessible at:
- SSE:
http://your-host:8000/sse - HTTP:
http://your-host:8000/mcp/
Docker
docker-compose up -d
Kubernetes
helm install perfsonar-mcp ./helm/perfsonar-mcp \
--set config.perfsonarHost=perfsonar.example.com
🤖 Claude Desktop Integration
Add to your claude_desktop_config.json:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"perfsonar": {
"command": "python",
"args": ["-m", "perfsonar_mcp"],
"env": {
"PERFSONAR_HOST": "your-perfsonar-host.example.com"
}
}
}
}
For web-based access, use the SSE endpoint:
{
"mcpServers": {
"perfsonar-web": {
"url": "http://your-server:8000/sse",
"transport": "sse"
}
}
}
🔧 Available Tools (13)
Measurement Archive (6)
query_measurements- Search measurementsget_throughput- Throughput dataget_latency- Latency dataget_packet_loss- Packet loss dataget_measurement_data- Raw time-seriesget_available_event_types- List types
Lookup Service (2)
lookup_testpoints- Find testpointsfind_pscheduler_services- Find pScheduler
pScheduler (5)
schedule_throughput_test- Run throughput testschedule_latency_test- Run latency testschedule_rtt_test- Run RTT testget_test_status- Check statusget_test_result- Get results
💡 Example Queries
Ask Claude:
"Find perfSONAR testpoints in Europe"
"Schedule a 30-second throughput test to host.example.com"
"Get hourly throughput averages between host1 and host2 for the last week"
🏗️ Architecture
Standard MCP (stdio)
AI Agent (Claude)
↓ MCP Protocol (stdio)
perfSONAR MCP Server (Python)
├── Measurement Archive Client
├── Lookup Service Client
└── pScheduler Client
↓
perfSONAR Services
Web-Accessible MCP (SSE/HTTP)
Web Clients / AI Agents
↓ HTTP/SSE
FastMCP Web Server (uvicorn)
↓ MCP Protocol
perfSONAR MCP Server (Python)
├── Measurement Archive Client
├── Lookup Service Client
└── pScheduler Client
↓
perfSONAR Services
Both transports expose the same tools and capabilities. The web transport enables:
- Remote access from any HTTP client
- Multiple concurrent connections
- Integration with web-based AI applications
- RESTful API-like access patterns
🛠️ Development
Logging
The server includes comprehensive logging for development and debugging. By default, logs are written to stderr at INFO level.
To enable DEBUG logging for more detailed output:
import logging
logging.basicConfig(level=logging.DEBUG)
Or set the log level via environment variable:
export PYTHONLOGLEVEL=DEBUG
python -m perfsonar_mcp
Log output includes:
- Server initialization and configuration
- API requests and responses
- Tool invocations with arguments
- Error details with stack traces
DevContainer
Open in VS Code → Reopen in Container
Local Development
# Install with dev dependencies
pip install -e '.[dev]'
# Format code
black src/perfsonar_mcp/
# Lint code
ruff check src/perfsonar_mcp/
# Type check
mypy src/perfsonar_mcp/
# Run tests
pytest tests/
📚 Documentation
🌐 Resources
📄 License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.