perfsonar-mcp

perfsonar-mcp

An MCP server for perfSONAR that enables querying historical network measurements, discovering global testpoints, and scheduling active network tests. It provides tools for monitoring throughput, latency, and packet loss through integration with measurement archives and pScheduler.

Category
Visit Server

README

perfsonar-mcp

MCP (Model Context Protocol) server for perfSONAR - Query measurements, discover testpoints, and schedule network tests.

🚀 Features

Measurement Archive Queries

  • Query historical measurements with filters
  • Get throughput, latency, and packet loss data
  • Access raw time-series data with summaries
  • Discover available measurement types

Lookup Service Integration

  • Find perfSONAR testpoints globally
  • Search by location (city, country)
  • Locate pScheduler services for testing

Test Scheduling (pScheduler)

  • Schedule throughput tests (iperf3)
  • Schedule latency tests (owping)
  • Schedule RTT tests (ping)
  • Monitor test status and retrieve results

📦 Installation

pip install -e .

For development with additional tools:

pip install -e '.[dev]'

⚙️ Configuration

Required environment variable:

export PERFSONAR_HOST=perfsonar.example.com

Optional:

export LOOKUP_SERVICE_URL=https://lookup.perfsonar.net/lookup
export PSCHEDULER_URL=https://perfsonar.example.com/pscheduler

🏃 Usage

Local (stdio transport)

Standard MCP stdio transport for local AI clients:

python -m perfsonar_mcp
# or
perfsonar-mcp

Web Access (SSE/HTTP transport)

FastMCP enables web-accessible MCP server via SSE (Server-Sent Events) or HTTP:

# SSE transport (recommended for web)
export PERFSONAR_HOST=perfsonar.example.com
fastmcp run src/perfsonar_mcp/fastmcp_server.py --transport sse --host 0.0.0.0 --port 8000

# HTTP transport (alternative)
fastmcp run src/perfsonar_mcp/fastmcp_server.py --transport http --host 0.0.0.0 --port 8000

# Or use the convenience command
perfsonar-mcp-web

The server will be accessible at:

  • SSE: http://your-host:8000/sse
  • HTTP: http://your-host:8000/mcp/

Docker

docker-compose up -d

Kubernetes

helm install perfsonar-mcp ./helm/perfsonar-mcp \
  --set config.perfsonarHost=perfsonar.example.com

🤖 Claude Desktop Integration

Add to your claude_desktop_config.json:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "perfsonar": {
      "command": "python",
      "args": ["-m", "perfsonar_mcp"],
      "env": {
        "PERFSONAR_HOST": "your-perfsonar-host.example.com"
      }
    }
  }
}

For web-based access, use the SSE endpoint:

{
  "mcpServers": {
    "perfsonar-web": {
      "url": "http://your-server:8000/sse",
      "transport": "sse"
    }
  }
}

🔧 Available Tools (13)

Measurement Archive (6)

  • query_measurements - Search measurements
  • get_throughput - Throughput data
  • get_latency - Latency data
  • get_packet_loss - Packet loss data
  • get_measurement_data - Raw time-series
  • get_available_event_types - List types

Lookup Service (2)

  • lookup_testpoints - Find testpoints
  • find_pscheduler_services - Find pScheduler

pScheduler (5)

  • schedule_throughput_test - Run throughput test
  • schedule_latency_test - Run latency test
  • schedule_rtt_test - Run RTT test
  • get_test_status - Check status
  • get_test_result - Get results

💡 Example Queries

Ask Claude:

"Find perfSONAR testpoints in Europe"

"Schedule a 30-second throughput test to host.example.com"

"Get hourly throughput averages between host1 and host2 for the last week"

🏗️ Architecture

Standard MCP (stdio)

AI Agent (Claude)
    ↓ MCP Protocol (stdio)
perfSONAR MCP Server (Python)
    ├── Measurement Archive Client
    ├── Lookup Service Client  
    └── pScheduler Client
        ↓
    perfSONAR Services

Web-Accessible MCP (SSE/HTTP)

Web Clients / AI Agents
    ↓ HTTP/SSE
FastMCP Web Server (uvicorn)
    ↓ MCP Protocol
perfSONAR MCP Server (Python)
    ├── Measurement Archive Client
    ├── Lookup Service Client  
    └── pScheduler Client
        ↓
    perfSONAR Services

Both transports expose the same tools and capabilities. The web transport enables:

  • Remote access from any HTTP client
  • Multiple concurrent connections
  • Integration with web-based AI applications
  • RESTful API-like access patterns

🛠️ Development

Logging

The server includes comprehensive logging for development and debugging. By default, logs are written to stderr at INFO level.

To enable DEBUG logging for more detailed output:

import logging
logging.basicConfig(level=logging.DEBUG)

Or set the log level via environment variable:

export PYTHONLOGLEVEL=DEBUG
python -m perfsonar_mcp

Log output includes:

  • Server initialization and configuration
  • API requests and responses
  • Tool invocations with arguments
  • Error details with stack traces

DevContainer

Open in VS Code → Reopen in Container

Local Development

# Install with dev dependencies
pip install -e '.[dev]'

# Format code
black src/perfsonar_mcp/

# Lint code
ruff check src/perfsonar_mcp/

# Type check
mypy src/perfsonar_mcp/

# Run tests
pytest tests/

📚 Documentation

🌐 Resources

📄 License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured