PDF Reader MCP Server

PDF Reader MCP Server

Empowers AI agents to securely read and extract information (text, metadata, page count) from PDF files within project contexts using a flexible MCP tool.

Category
Visit Server

README

PDF Reader MCP Server (@sylphlab/pdf-reader-mcp)

<!-- Status Badges Area -->

CI/CD Pipeline codecov npm version Docker Pulls License: MIT

<!-- End Status Badges Area -->

Empower your AI agents (like Cline) with the ability to securely read and extract information (text, metadata, page count) from PDF files within your project context using a single, flexible tool.

Installation

Using npm (Recommended)

Install as a dependency in your MCP host environment or project:

pnpm add @sylphlab/pdf-reader-mcp # Or npm install / yarn add

Configure your MCP host (e.g., mcp_settings.json) to use npx:

{
  "mcpServers": {
    "pdf-reader-mcp": {
      "command": "npx",
      "args": ["@sylphlab/pdf-reader-mcp"],
      "name": "PDF Reader (npx)"
    }
  }
}

(Ensure the host sets the correct cwd for the target project)

Using Docker

Pull the image:

docker pull sylphlab/pdf-reader-mcp:latest

Configure your MCP host to run the container, mounting your project directory to /app:

{
  "mcpServers": {
    "pdf-reader-mcp": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-v",
        "/path/to/your/project:/app", // Or use "$PWD:/app", "%CD%:/app", etc.
        "sylphlab/pdf-reader-mcp:latest"
      ],
      "name": "PDF Reader (Docker)"
    }
  }
}

Local Build (For Development)

  1. Clone: git clone https://github.com/sylphlab/pdf-reader-mcp.git
  2. Install: cd pdf-reader-mcp && pnpm install
  3. Build: pnpm run build
  4. Configure MCP Host:
    {
      "mcpServers": {
        "pdf-reader-mcp": {
          "command": "node",
          "args": ["/path/to/cloned/repo/pdf-reader-mcp/build/index.js"],
          "name": "PDF Reader (Local Build)"
        }
      }
    }
    
    (Ensure the host sets the correct cwd for the target project)

Quick Start

Assuming the server is running and configured in your MCP host:

MCP Request (Get metadata and page 2 text from a local PDF):

{
  "tool_name": "read_pdf",
  "arguments": {
    "sources": [
      {
        "path": "./documents/my_report.pdf",
        "pages": [2]
      }
    ],
    "include_metadata": true,
    "include_page_count": false, // Default is true, explicitly false here
    "include_full_text": false // Ignored because 'pages' is specified
  }
}

Expected Response Snippet:

{
  "results": [
    {
      "source": "./documents/my_report.pdf",
      "success": true,
      "data": {
        "page_texts": [
          { "page": 2, "text": "Text content from page 2..." }
        ],
        "info": { ... },
        "metadata": { ... }
        // num_pages not included as requested
      }
    }
  ]
}

Why Choose This Project?

  • 🛡️ Secure: Confines file access strictly to the project root directory.
  • 🌐 Flexible: Handles both local relative paths and public URLs.
  • 🧩 Consolidated: A single read_pdf tool serves multiple extraction needs (full text, specific pages, metadata, page count).
  • ⚙️ Structured Output: Returns data in a predictable JSON format, easy for agents to parse.
  • 🚀 Easy Integration: Designed for seamless use within MCP environments via npx or Docker.
  • ✅ Robust: Uses pdfjs-dist for reliable parsing and Zod for input validation.

Performance Advantages

Initial benchmarks using Vitest on a sample PDF show efficient handling of various operations:

Scenario Operations per Second (hz) Relative Speed
Handle Non-Existent File ~12,933 Fastest
Get Full Text ~5,575
Get Specific Page (Page 1) ~5,329
Get Specific Pages (Pages 1 & 2) ~5,242
Get Metadata & Page Count ~4,912 Slowest

(Higher hz indicates better performance. Results may vary based on PDF complexity and environment.)

See the Performance Documentation for more details and future plans.

Features

  • Read full text content from PDF files.
  • Read text content from specific pages or page ranges.
  • Read PDF metadata (author, title, creation date, etc.).
  • Get the total page count of a PDF.
  • Process multiple PDF sources (local paths or URLs) in a single request.
  • Securely operates within the defined project root.
  • Provides structured JSON output via MCP.
  • Available via npm and Docker Hub.

Design Philosophy

The server prioritizes security through context confinement, efficiency via structured data transfer, and simplicity for easy integration into AI agent workflows. It aims for minimal dependencies, relying on the robust pdfjs-dist library.

See the full Design Philosophy documentation.

Comparison with Other Solutions

Compared to direct file access (often infeasible) or generic filesystem tools, this server offers PDF-specific parsing capabilities. Unlike external CLI tools (e.g., pdftotext), it provides a secure, integrated MCP interface with structured output, enhancing reliability and ease of use for AI agents.

See the full Comparison documentation.

Future Plans (Roadmap)

  • Documentation:
    • Finalize all documentation sections (Guide, API, Design, Comparison).
    • Resolve TypeDoc issue and generate API documentation.
    • Add more examples and advanced usage patterns.
    • Implement PWA support and mobile optimization for the docs site.
    • Add share buttons and growth metrics to the docs site.
  • Benchmarking:
    • Conduct comprehensive benchmarks with diverse PDF files (size, complexity).
    • Measure memory usage.
    • Compare URL vs. local file performance.
  • Core Functionality:
    • Explore potential optimizations for very large PDF files.
    • Investigate options for extracting images or annotations (longer term).
  • Testing:
    • Increase test coverage towards 100% where practical.
    • Add runtime tests once feasible.

Documentation

For detailed usage, API reference, and guides, please visit the Full Documentation Website (Link to be updated upon deployment).

Community & Support

  • Found a bug or have a feature request? Please open an issue on GitHub Issues.
  • Want to contribute? We welcome contributions! Please see CONTRIBUTING.md.
  • Star & Watch: If you find this project useful, please consider starring ⭐ and watching 👀 the repository on GitHub to show your support and stay updated!

License

This project is licensed under the MIT License.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured