PDF Reader MCP
A high-performance Model Context Protocol server that enables AI agents to extract text, images, and metadata from PDF documents using parallel processing. It features intelligent Y-coordinate content ordering to preserve natural reading flow and supports both local files and URL-based sources.
README
<div align="center">
PDF Reader MCP ๐
Production-ready PDF processing server for AI agents
5-10x faster parallel processing โข Y-coordinate content ordering โข 94%+ test coverage โข 103 tests passing
<a href="https://mseep.ai/app/SylphxAI-pdf-reader-mcp"> <img src="https://mseep.net/pr/SylphxAI-pdf-reader-mcp-badge.png" alt="Security Validated" width="200"/> </a>
</div>
ๅบไบๅ้กน็ฎ: ๆญค้กน็ฎๅบไบ pdf-reader-mcp ไฟฎๆน่ๆฅ
๐ Overview
PDF Reader MCP is a production-ready Model Context Protocol server that empowers AI agents with enterprise-grade PDF processing capabilities. Extract text, images, and metadata with unmatched performance and reliability.
The Problem:
// Traditional PDF processing
- Sequential page processing (slow)
- No natural content ordering
- Complex path handling
- Poor error isolation
The Solution:
// PDF Reader MCP
- 5-10x faster parallel processing โก
- Y-coordinate based ordering ๐
- Flexible path support (absolute/relative) ๐ฏ
- Per-page error resilience ๐ก๏ธ
- 94%+ test coverage โ
Result: Production-ready PDF processing that scales.
โก Key Features
Performance
- ๐ 5-10x faster than sequential with automatic parallelization
- โก 12,933 ops/sec error handling, 5,575 ops/sec text extraction
- ๐จ Process 50-page PDFs in seconds with multi-core utilization
- ๐ฆ Lightweight with minimal dependencies
Developer Experience
- ๐ฏ Path Flexibility - Absolute & relative paths, Windows/Unix support (v1.3.0)
- ๐ผ๏ธ Smart Ordering - Y-coordinate based content preserves document layout
- ๐ก๏ธ Type Safe - Full TypeScript with strict mode enabled
- ๐ Battle-tested - 103 tests, 94%+ coverage, 98%+ function coverage
- ๐จ Simple API - Single tool handles all operations elegantly
๐ Performance Benchmarks
Real-world performance from production testing:
| Operation | Ops/sec | Performance | Use Case |
|---|---|---|---|
| Error handling | 12,933 | โกโกโกโกโก | Validation & safety |
| Extract full text | 5,575 | โกโกโกโก | Document analysis |
| Extract page | 5,329 | โกโกโกโก | Single page ops |
| Multiple pages | 5,242 | โกโกโกโก | Batch processing |
| Metadata only | 4,912 | โกโกโก | Quick inspection |
Parallel Processing Speedup
| Document | Sequential | Parallel | Speedup |
|---|---|---|---|
| 10-page PDF | ~2s | ~0.3s | 5-8x faster |
| 50-page PDF | ~10s | ~1s | 10x faster |
| 100+ pages | ~20s | ~2s | Linear scaling with CPU cores |
Benchmarks vary based on PDF complexity and system resources.
๐ฆ Installation
# Quick start - zero installation
npx @sylphx/pdf-reader-mcp
# Using pnpm (recommended)
pnpm add @sylphx/pdf-reader-mcp
# Using npm
npm install @sylphx/pdf-reader-mcp
# Using yarn
yarn add @sylphx/pdf-reader-mcp
# For Claude Desktop (easiest)
npx -y @smithery/cli install @sylphx/pdf-reader-mcp --client claude
๐ฏ Quick Start
Configuration
Add to your MCP client (claude_desktop_config.json, Cursor, Cline):
{
"mcpServers": {
"pdf-reader-mcp": {
"command": "npx",
"args": ["@bachstudio/pdf-reader-mcp"]
}
}
}
Basic Usage
{
"sources": [{
"path": "documents/report.pdf"
}],
"include_full_text": true,
"include_metadata": true,
"include_page_count": true
}
Result:
- โ Full text content extracted
- โ PDF metadata (author, title, dates)
- โ Total page count
- โ Structural sharing - unchanged parts preserved
Extract Specific Pages
{
"sources": [{
"path": "documents/manual.pdf",
"pages": "1-5,10,15-20"
}],
"include_full_text": true
}
Absolute Paths (v1.3.0+)
// Windows - Both formats work!
{
"sources": [{
"path": "C:\\Users\\John\\Documents\\report.pdf"
}],
"include_full_text": true
}
// Unix/Mac
{
"sources": [{
"path": "/home/user/documents/contract.pdf"
}],
"include_full_text": true
}
No more "Absolute paths are not allowed" errors!
Extract Images with Natural Ordering
{
"sources": [{
"path": "presentation.pdf",
"pages": [1, 2, 3]
}],
"include_images": true,
"include_full_text": true
}
Response includes:
- Text and images in exact document order (Y-coordinate sorted)
- Base64-encoded images with metadata (width, height, format)
- Natural reading flow preserved for AI comprehension
Batch Processing
{
"sources": [
{ "path": "C:\\Reports\\Q1.pdf", "pages": "1-10" },
{ "path": "/home/user/Q2.pdf", "pages": "1-10" },
{ "url": "https://example.com/Q3.pdf" }
],
"include_full_text": true
}
โก All PDFs processed in parallel automatically!
โจ Features
Core Capabilities
- โ Text Extraction - Full document or specific pages with intelligent parsing
- โ Image Extraction - Base64-encoded with complete metadata (width, height, format)
- โ Content Ordering - Y-coordinate based layout preservation for natural reading flow
- โ Metadata Extraction - Author, title, creation date, and custom properties
- โ Page Counting - Fast enumeration without loading full content
- โ Dual Sources - Local files (absolute or relative paths) and HTTP/HTTPS URLs
- โ Batch Processing - Multiple PDFs processed concurrently
Advanced Features
- โก 5-10x Performance - Parallel page processing with Promise.all
- ๐ฏ Smart Pagination - Extract ranges like "1-5,10-15,20"
- ๐ผ๏ธ Multi-Format Images - RGB, RGBA, Grayscale with automatic detection
- ๐ก๏ธ Path Flexibility - Windows, Unix, and relative paths all supported (v1.3.0)
- ๐ Error Resilience - Per-page error isolation with detailed messages
- ๐ Large File Support - Efficient streaming and memory management
- ๐ Type Safe - Full TypeScript with strict mode enabled
๐ What's New in v1.3.0
๐ Absolute Paths Now Supported!
// โ
Windows
{ "path": "C:\\Users\\John\\Documents\\report.pdf" }
{ "path": "C:/Users/John/Documents/report.pdf" }
// โ
Unix/Mac
{ "path": "/home/john/documents/report.pdf" }
{ "path": "/Users/john/Documents/report.pdf" }
// โ
Relative (still works)
{ "path": "documents/report.pdf" }
Other Improvements:
- ๐ Fixed Zod validation error handling
- ๐ฆ Updated all dependencies to latest versions
- โ 103 tests passing, 94%+ coverage maintained
<details> <summary><strong>๐ View Full Changelog</strong></summary>
<br/>
v1.2.0 - Content Ordering
- Y-coordinate based text and image ordering
- Natural reading flow for AI models
- Intelligent line grouping
v1.1.0 - Image Extraction & Performance
- Base64-encoded image extraction
- 10x speedup with parallel processing
- Comprehensive test coverage (94%+)
</details>
๐ API Reference
read_pdf Tool
The single tool that handles all PDF operations.
Parameters
| Parameter | Type | Description | Default |
|---|---|---|---|
sources |
Array | List of PDF sources to process | Required |
include_full_text |
boolean | Extract full text content | false |
include_metadata |
boolean | Extract PDF metadata | true |
include_page_count |
boolean | Include total page count | true |
include_images |
boolean | Extract embedded images | false |
Source Object
{
path?: string; // Local file path (absolute or relative)
url?: string; // HTTP/HTTPS URL to PDF
pages?: string | number[]; // Pages to extract: "1-5,10" or [1,2,3]
}
Examples
Metadata only (fast):
{
"sources": [{ "path": "large.pdf" }],
"include_metadata": true,
"include_page_count": true,
"include_full_text": false
}
From URL:
{
"sources": [{
"url": "https://arxiv.org/pdf/2301.00001.pdf"
}],
"include_full_text": true
}
Page ranges:
{
"sources": [{
"path": "manual.pdf",
"pages": "1-5,10-15,20" // Pages 1,2,3,4,5,10,11,12,13,14,15,20
}]
}
๐ง Advanced Usage
<details> <summary><strong>๐ Y-Coordinate Content Ordering</strong></summary>
<br/>
Content is returned in natural reading order based on Y-coordinates:
Document Layout:
โโโโโโโโโโโโโโโโโโโโโโโ
โ [Title] Y:100 โ
โ [Image] Y:150 โ
โ [Text] Y:400 โ
โ [Photo A] Y:500 โ
โ [Photo B] Y:550 โ
โโโโโโโโโโโโโโโโโโโโโโโ
Response Order:
[
{ type: "text", text: "Title..." },
{ type: "image", data: "..." },
{ type: "text", text: "..." },
{ type: "image", data: "..." },
{ type: "image", data: "..." }
]
Benefits:
- AI understands spatial relationships
- Natural document comprehension
- Perfect for vision-enabled models
- Automatic multi-line text grouping
</details>
<details> <summary><strong>๐ผ๏ธ Image Extraction</strong></summary>
<br/>
Enable extraction:
{
"sources": [{ "path": "manual.pdf" }],
"include_images": true
}
Response format:
{
"images": [{
"page": 1,
"index": 0,
"width": 1920,
"height": 1080,
"format": "rgb",
"data": "base64-encoded-png..."
}]
}
Supported formats: RGB, RGBA, Grayscale Auto-detected: JPEG, PNG, and other embedded formats
</details>
<details> <summary><strong>๐ Path Configuration</strong></summary>
<br/>
Absolute paths (v1.3.0+) - Direct file access:
{ "path": "C:\\Users\\John\\file.pdf" }
{ "path": "/home/user/file.pdf" }
Relative paths - Workspace files:
{ "path": "docs/report.pdf" }
{ "path": "./2024/Q1.pdf" }
Configure working directory:
{
"mcpServers": {
"pdf-reader-mcp": {
"command": "npx",
"args": ["@sylphx/pdf-reader-mcp"],
"cwd": "/path/to/documents"
}
}
}
</details>
<details> <summary><strong>๐ Large PDF Strategies</strong></summary>
<br/>
Strategy 1: Page ranges
{ "sources": [{ "path": "big.pdf", "pages": "1-20" }] }
Strategy 2: Progressive loading
// Step 1: Get page count
{ "sources": [{ "path": "big.pdf" }], "include_full_text": false }
// Step 2: Extract sections
{ "sources": [{ "path": "big.pdf", "pages": "50-75" }] }
Strategy 3: Parallel batching
{
"sources": [
{ "path": "big.pdf", "pages": "1-50" },
{ "path": "big.pdf", "pages": "51-100" }
]
}
</details>
๐ง Troubleshooting
"Absolute paths are not allowed"
Solution: Upgrade to v1.3.0+
npm update @sylphx/pdf-reader-mcp
Restart your MCP client completely.
"File not found"
Causes:
- File doesn't exist at path
- Wrong working directory
- Permission issues
Solutions:
Use absolute path:
{ "path": "C:\\Full\\Path\\file.pdf" }
Or configure cwd:
{
"pdf-reader-mcp": {
"command": "npx",
"args": ["@sylphx/pdf-reader-mcp"],
"cwd": "/path/to/docs"
}
}
"No tools showing up"
Solution:
npm cache clean --force
rm -rf node_modules package-lock.json
npm install @sylphx/pdf-reader-mcp@latest
Restart MCP client completely.
๐๏ธ Architecture
Tech Stack
| Component | Technology |
|---|---|
| Runtime | Node.js 22+ ESM |
| PDF Engine | PDF.js (Mozilla) |
| Validation | Zod + JSON Schema |
| Protocol | MCP SDK |
| Language | TypeScript (strict) |
| Testing | Vitest (103 tests) |
| Quality | Biome (50x faster) |
| CI/CD | GitHub Actions |
Design Principles
- ๐ Security First - Flexible paths with secure defaults
- ๐ฏ Simple Interface - One tool, all operations
- โก Performance - Parallel processing, efficient memory
- ๐ก๏ธ Reliability - Per-page isolation, detailed errors
- ๐งช Quality - 94%+ coverage, strict TypeScript
- ๐ Type Safety - No
anytypes, strict mode - ๐ Backward Compatible - Smooth upgrades always
๐งช Development
<details> <summary><strong>Setup & Scripts</strong></summary>
<br/>
Prerequisites:
- Node.js >= 22.0.0
- pnpm (recommended) or npm
Setup:
git clone https://github.com/SylphxAI/pdf-reader-mcp.git
cd pdf-reader-mcp
pnpm install && pnpm build
Scripts:
pnpm run build # Build TypeScript
pnpm run test # Run 103 tests
pnpm run test:cov # Coverage (94%+)
pnpm run check # Lint + format
pnpm run check:fix # Auto-fix
pnpm run benchmark # Performance tests
Quality:
- โ 103 tests
- โ 94%+ coverage
- โ 98%+ function coverage
- โ Zero lint errors
- โ Strict TypeScript
</details>
<details> <summary><strong>Contributing</strong></summary>
<br/>
Quick Start:
- Fork repository
- Create branch:
git checkout -b feature/awesome - Make changes:
pnpm test - Format:
pnpm run check:fix - Commit: Use Conventional Commits
- Open PR
Commit Format:
feat(images): add WebP support
fix(paths): handle UNC paths
docs(readme): update examples
See CONTRIBUTING.md
</details>
๐ Documentation
- ๐ Full Docs - Complete guides
- ๐ Getting Started - Quick start
- ๐ API Reference - Detailed API
- ๐๏ธ Design - Architecture
- โก Performance - Benchmarks
- ๐ Comparison - vs. alternatives
๐บ๏ธ Roadmap
โ Completed
- [x] Image extraction (v1.1.0)
- [x] 5-10x parallel speedup (v1.1.0)
- [x] Y-coordinate ordering (v1.2.0)
- [x] Absolute paths (v1.3.0)
- [x] 94%+ test coverage (v1.3.0)
๐ Next
- [ ] OCR for scanned PDFs
- [ ] Annotation extraction
- [ ] Form field extraction
- [ ] Table detection
- [ ] 100+ MB streaming
- [ ] Advanced caching
- [ ] PDF generation
Vote at Discussions
๐ Recognition
Featured on:
Trusted worldwide โข Enterprise adoption โข Battle-tested
๐ค Support
- ๐ Bug Reports
- ๐ฌ Discussions
- ๐ Documentation
- ๐ง Email
Show Your Support: โญ Star โข ๐ Watch โข ๐ Report bugs โข ๐ก Suggest features โข ๐ Contribute
๐ Stats
103 Tests โข 94%+ Coverage โข Production Ready
๐ License
MIT ยฉ Sylphx
๐ Credits
Built with:
Special thanks to the open source community โค๏ธ
<p align="center"> <strong>5-10x faster. Production-ready. Battle-tested.</strong> <br> <sub>The PDF processing server that actually scales</sub> <br><br> <a href="https://sylphx.com">sylphx.com</a> โข <a href="https://x.com/SylphxAI">@SylphxAI</a> โข <a href="mailto:hi@sylphx.com">hi@sylphx.com</a> </p>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.