PDF MCP Server
Enables AI-powered querying of PDF documents using hybrid retrieval (BM25 + vector search) and retrieval-augmented generation, returning structured answers with source citations and confidence scores.
README
PDF Retrieval MCP Server
A completely free Model Context Protocol (MCP) server for retrieving relevant chunks from PDF documents using hybrid search (BM25 + Vector Search).
๐ Features
- PDF Document Processing: Automatic parsing and indexing of PDF files using Docling
- Hybrid Retrieval: Combines BM25 (keyword) and vector search (semantic) for accurate retrieval
- Free Embeddings: Uses ChromaDB's default sentence-transformers (no API costs!)
- Pure Retrieval Mode: Returns raw document chunks for agent processing (no LLM answer generation)
- Fresh Start: Clears vector database on each startup for clean indexing
- MCP Integration: Exposes
retrieve_pdf_chunkstool via FastMCP for seamless agent integration
๐ Prerequisites
- Python 3.11 or later
- PDF documents to index
- No API keys required! โจ
๐ ๏ธ Installation
1. Clone the Repository (if not already done)
git clone <repository-url>
cd pdf_mcpserver
2. Install Dependencies with uv
uv sync
This will automatically:
- Create a virtual environment (
.venv) - Install all dependencies from
pyproject.toml - Set up the project
3. Add PDF Documents
Create a documents directory and add your PDF files:
mkdir documents
# Copy your PDF files to the documents/ directory
That's it! No API keys or additional configuration needed.
๐ฏ Usage
Running the Server
uv run python main.py
Or activate the virtual environment first:
source .venv/bin/activate # On Windows: .venv\Scripts\activate
python main.py
The server will:
- Start immediately (lazy initialization)
- Load and index PDFs on first query
- Be ready to retrieve document chunks via MCP
Using the retrieve_pdf_chunks Tool
The server exposes a single MCP tool: retrieve_pdf_chunks(query: str, max_chunks: int = 5) -> str
Example Query:
retrieve_pdf_chunks("machine learning algorithms", max_chunks=3)
Example Response:
{
"query": "machine learning algorithms",
"chunks": [
{
"content": "Machine learning algorithms can be categorized into supervised, unsupervised, and reinforcement learning...",
"document_name": "ml_guide.pdf",
"page_number": 12,
"metadata": {"source": "ml_guide.pdf"}
},
{
"content": "Common supervised learning algorithms include linear regression, decision trees, and neural networks...",
"document_name": "ml_guide.pdf",
"page_number": 15,
"metadata": {"source": "ml_guide.pdf"}
}
],
"total_chunks": 2
}
Response Structure
| Field | Type | Description |
|---|---|---|
query |
string | The original search query |
chunks |
array | List of relevant document chunks |
chunks[].content |
string | The text content of the chunk |
chunks[].document_name |
string | Source PDF filename |
chunks[].page_number |
int | Page number (if available) |
chunks[].metadata |
object | Additional metadata |
total_chunks |
int | Number of chunks returned |
How Agents Use This
When an agent (like Claude) calls this tool:
- Agent sends a search query
- Server returns relevant document chunks
- Agent uses chunks in its context to answer questions
Example Agent Flow:
User: "What are the main ML algorithms discussed?"
โ
Agent calls: retrieve_pdf_chunks("machine learning algorithms")
โ
Server returns: 3 relevant chunks from PDFs
โ
Agent reads chunks and generates answer for user
๐ Testing with MCP Inspector
The MCP Inspector is a web-based tool for testing and debugging MCP servers interactively.
Running the Inspector
npx @modelcontextprotocol/inspector uv run python main.py
This command will:
- Start the MCP Inspector proxy server
- Launch your PDF Retrieval Server
- Open a web browser with the Inspector UI
What You'll See
The Inspector provides:
- Tool Discovery: View available tools (
retrieve_pdf_chunks) - Interactive Testing: Test queries with custom parameters
- Real-time Responses: See JSON responses in real-time
- Request/Response Logs: Debug the MCP protocol communication
Example Inspector Workflow
- Open the Inspector - Browser opens automatically at
http://localhost:6274 - Wait for Initialization - Server loads and indexes PDFs on first query (~1-2 minutes)
- Select Tool - Click on
retrieve_pdf_chunksin the tools list - Enter Query - Type your search query (e.g., "machine learning")
- Set Parameters - Optionally adjust
max_chunks(default: 5) - Execute - Click "Run" to see the results
- View Response - Inspect the returned chunks and metadata
Inspector Tips
- First query is slow: PDF indexing happens on first query (87 seconds for typical PDFs)
- Subsequent queries are fast: Embeddings are cached in ChromaDB
- Fresh start: Server clears ChromaDB on each restart for clean indexing
- Check logs: Terminal shows detailed logging of the indexing process
๐๏ธ Architecture
pdf_mcpserver/
โโโ src/
โ โโโ config.py # Configuration management
โ โโโ constants.py # Configuration constants
โ โโโ models.py # Pydantic response models
โ โโโ pdf_processor.py # PDF loading and hybrid retrieval
โ โโโ retrieval_handler.py # Document chunk retrieval
โโโ main.py # MCP server entry point
โโโ pyproject.toml # Project metadata
โโโ .env # Environment configuration
Key Components
- PDFProcessor: Singleton class that loads PDFs, converts to Markdown using Docling, and builds hybrid retriever (BM25 + Vector Search)
- RetrievalHandler: Retrieves relevant chunks for queries - no LLM answer## ๐ง Configuration
Configuration is managed through environment variables. Create a .env file in the project root:
# Optional: PDF Documents Directory (defaults to ./documents)
PDF_DOCUMENTS_DIR=./documents
# Optional: ChromaDB Directory (defaults to ./chroma_db)
CHROMA_DB_DIR=./chroma_db
# Optional: Log Level (defaults to INFO)
LOG_LEVEL=INFO
Configuration Options
| Variable | Required | Default | Description |
|---|---|---|---|
PDF_DOCUMENTS_DIR |
No | ./documents |
Directory containing PDF files to index |
CHROMA_DB_DIR |
No | ./chroma_db |
Directory for ChromaDB vector storage |
LOG_LEVEL |
No | INFO |
Logging level (DEBUG, INFO, WARNING, ERROR) |
Note: No API keys required! ChromaDB uses free local embeddings (sentence-transformers).
๐งช Testing
Run unit tests:
uv run pytest tests/
๐ Troubleshooting
No PDF files found
Error: No PDF files found in ./documents
Solution: Add PDF files to the documents/ directory or update PDF_DOCUMENTS_DIR in .env
Import errors
Error: ModuleNotFoundError: No module named 'docling'
Solution: Ensure all dependencies are installed: uv sync
CUDA out of memory
Error: CUDA out of memory
Solution: The server is configured to use CPU-only mode. If you still see this error, check that CUDA_VISIBLE_DEVICES="" is set in src/pdf_processor.py
๐ Dependencies
- fastmcp: MCP server framework
- docling: Document processing and parsing
- chromadb: Vector database with free sentence-transformers embeddings
- langchain: RAG framework and retrievers
- loguru: Logging
No paid APIs required! All embeddings are generated locally using ChromaDB's default model (all-MiniLM-L6-v2).
๐ค Contributing
This is a Proof of Concept (PoC) implementation. For production use, consider:
- Adding caching for processed documents
- Implementing multi-agent workflow with fact verification
- Supporting additional document formats (DOCX, TXT, etc.)
- Adding authentication and rate limiting
๐ License
[Your License Here]
๐ Acknowledgments
Based on the docchat-docling architecture.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
E2B
Using MCP to run code via e2b.
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Neon Database
MCP server for interacting with Neon Management API and databases