PDF Knowledgebase MCP Server
A Model Context Protocol server that enables intelligent document search and retrieval from PDF collections, providing semantic search capabilities powered by OpenAI embeddings and ChromaDB vector storage.
README
PDF Knowledgebase MCP Server
A Model Context Protocol (MCP) server that enables intelligent document search and retrieval from PDF collections. Built for seamless integration with Claude Desktop, Continue, Cline, and other MCP clients, this server provides semantic search capabilities powered by OpenAI embeddings and ChromaDB vector storage.
Table of Contents
- 🚀 Quick Start
- 🏗️ Architecture Overview
- 🎯 Parser Selection Guide
- ⚙️ Configuration
- 🖥️ MCP Client Setup
- 📊 Performance & Troubleshooting
- 🔧 Advanced Configuration
- 📚 Appendix
🚀 Quick Start
Step 1: Install the Server
uvx pdfkb-mcp
Step 2: Configure Your MCP Client
Claude Desktop (Most Common):
Configuration file locations:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"KNOWLEDGEBASE_PATH": "/Users/yourname/Documents/PDFs"
},
"transport": "stdio",
"autoRestart": true
}
}
}
VS Code (Native MCP) - Create .vscode/mcp.json in workspace:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"KNOWLEDGEBASE_PATH": "${workspaceFolder}/pdfs"
},
"transport": "stdio"
}
}
}
Step 3: Verify Installation
- Restart your MCP client completely
- Check for PDF KB tools: Look for
add_document,search_documents,list_documents,remove_document - Test functionality: Try adding a PDF and searching for content
🏗️ Architecture Overview
MCP Integration
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ MCP Client │ │ MCP Client │ │ MCP Client │
│ (Claude Desktop)│ │(VS Code/Continue)| │ (Other) │
└─────────┬───────┘ └─────────┬────────┘ └─────────┬───────┘
│ │ │
└──────────────────────┼───────────────────────┘
│
┌────────────┴────────────┐
│ Model Context │
│ Protocol (MCP) │
│ Standard Layer │
└────────────┬────────────┘
│
┌──────────────────────┼───────────────────────┐
│ │ │
┌─────────┴───────┐ ┌─────────┴────────┐ ┌─────────┴───────┐
│ PDF KB Server │ │ Other MCP │ │ Other MCP │
│ (This Server) │ │ Server │ │ Server │
└─────────────────┘ └──────────────────┘ └─────────────────┘
Available Tools & Resources
Tools (Actions your client can perform):
add_document(path, metadata?)- Add PDF to knowledgebasesearch_documents(query, limit=5, metadata_filter?)- Semantic search across PDFslist_documents(metadata_filter?)- List all documents with metadataremove_document(document_id)- Remove document from knowledgebase</search> </search_and_replace>
Resources (Data your client can access):
pdf://{document_id}- Full document content as JSONpdf://{document_id}/page/{page_number}- Specific page contentpdf://list- List of all documents with metadata
🎯 Parser Selection Guide
Decision Tree
Document Type & Priority?
├── 🏃 Speed Priority → PyMuPDF4LLM (fastest processing, low memory)
├── 📚 Academic Papers → MinerU (fast with GPU, excellent formulas)
├── 📊 Business Reports → Docling (medium speed, best tables)
├── ⚖️ Balanced Quality → Marker (medium speed, good structure)
└── 🎯 Maximum Accuracy → LLM (slow, vision-based API calls)
```</search>
</search_and_replace>
### Performance Comparison
| Parser | Processing Speed | Memory | Text Quality | Table Quality | Best For |
|--------|------------------|--------|--------------|---------------|----------|
| **PyMuPDF4LLM** | **Fastest** | Low | Good | Basic | Speed priority |
| **MinerU** | Fast (with GPU) | High | Excellent | Excellent | Scientific papers |
| **Docling** | Medium | Medium | Excellent | **Excellent** | Business documents |
| **Marker** | Medium | Medium | Excellent | Good | **Balanced (default)** |
| **LLM** | Slow | Low | Excellent | Excellent | Maximum accuracy |</search>
</search_and_replace>
*Benchmarks from research studies and technical reports*
## ⚙️ Configuration
### Tier 1: Basic Configurations (80% of users)
**Default (Recommended)**:
```json
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"PDF_PARSER": "marker"
},
"transport": "stdio"
}
}
}
Speed Optimized:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"PDF_PARSER": "pymupdf4llm",
"CHUNK_SIZE": "800"
},
"transport": "stdio"
}
}
}
Memory Efficient:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"PDF_PARSER": "pymupdf4llm",
"EMBEDDING_BATCH_SIZE": "50"
},
"transport": "stdio"
}
}
}
Tier 2: Use Case Specific (15% of users)
Academic Papers:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"PDF_PARSER": "mineru",
"CHUNK_SIZE": "1200"
},
"transport": "stdio"
}
}
}
Business Documents:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"PDF_PARSER": "docling",
"DOCLING_TABLE_MODE": "ACCURATE",
"DOCLING_DO_TABLE_STRUCTURE": "true"
},
"transport": "stdio"
}
}
}
Multi-language Documents:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"PDF_PARSER": "docling",
"DOCLING_OCR_LANGUAGES": "en,fr,de,es",
"DOCLING_DO_OCR": "true"
},
"transport": "stdio"
}
}
}
Maximum Quality:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"OPENROUTER_API_KEY": "sk-or-v1-abc123def456ghi789...",
"PDF_PARSER": "llm",
"LLM_MODEL": "anthropic/claude-3.5-sonnet",
"EMBEDDING_MODEL": "text-embedding-3-large"
},
"transport": "stdio"
}
}
}
Essential Environment Variables
| Variable | Default | Description |
|---|---|---|
OPENAI_API_KEY |
required | OpenAI API key for embeddings |
KNOWLEDGEBASE_PATH |
./pdfs |
Directory containing PDF files |
CACHE_DIR |
./.cache |
Cache directory for processing |
PDF_PARSER |
marker |
Parser: marker, pymupdf4llm, mineru, docling, llm |
CHUNK_SIZE |
1000 |
Target chunk size for LangChain chunker |
EMBEDDING_MODEL |
text-embedding-3-large |
OpenAI embedding model |
🖥️ MCP Client Setup
Claude Desktop
Configuration File Location:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
Configuration:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"KNOWLEDGEBASE_PATH": "/Users/yourname/Documents/PDFs",
"CACHE_DIR": "/Users/yourname/Documents/PDFs/.cache"
},
"transport": "stdio",
"autoRestart": true
}
}
}
Verification:
- Restart Claude Desktop completely
- Look for PDF KB tools in the interface
- Test with "Add a document" or "Search documents"
VS Code with Native MCP Support
Configuration (.vscode/mcp.json in workspace):
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"KNOWLEDGEBASE_PATH": "${workspaceFolder}/pdfs"
},
"transport": "stdio"
}
}
}
Verification:
- Reload VS Code window
- Check VS Code's MCP server status in Command Palette
- Use MCP tools in Copilot Chat
VS Code with Continue Extension
Configuration (.continue/config.json):
{
"models": [...],
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-proj-abc123def456ghi789...",
"KNOWLEDGEBASE_PATH": "${workspaceFolder}/pdfs"
},
"transport": "stdio"
}
}
}
Verification:
- Reload VS Code window
- Check Continue panel for server connection
- Use
@pdfkbin Continue chat</search> </search_and_replace>
Generic MCP Client
Standard Configuration Template:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "required",
"KNOWLEDGEBASE_PATH": "required-absolute-path",
"PDF_PARSER": "optional-default-marker"
},
"transport": "stdio",
"autoRestart": true,
"timeout": 30000
}
}
}
📊 Performance & Troubleshooting
Common Issues
Server not appearing in MCP client:
// ❌ Wrong: Missing transport
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"]
}
}
}
// ✅ Correct: Include transport and restart client
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"transport": "stdio"
}
}
}
Processing too slow:
// Switch to faster parser
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-key",
"PDF_PARSER": "pymupdf4llm"
},
"transport": "stdio"
}
}
}
Memory issues:
// Reduce memory usage
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-key",
"EMBEDDING_BATCH_SIZE": "25",
"CHUNK_SIZE": "500"
},
"transport": "stdio"
}
}
}
Poor table extraction:
// Use table-optimized parser
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-key",
"PDF_PARSER": "docling",
"DOCLING_TABLE_MODE": "ACCURATE"
},
"transport": "stdio"
}
}
}
Resource Requirements
| Configuration | RAM Usage | Processing Speed | Best For |
|---|---|---|---|
| Speed | 2-4 GB | Fastest | Large collections |
| Balanced | 4-6 GB | Medium | Most users |
| Quality | 6-12 GB | Medium-Fast | Accuracy priority |
| GPU | 8-16 GB | Very Fast | High-volume processing |
🔧 Advanced Configuration
Parser-Specific Options
MinerU Configuration:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-key",
"PDF_PARSER": "mineru",
"MINERU_LANG": "en",
"MINERU_METHOD": "auto",
"MINERU_VRAM": "16"
},
"transport": "stdio"
}
}
}
LLM Parser Configuration:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-key",
"OPENROUTER_API_KEY": "sk-or-v1-abc123def456ghi789...",
"PDF_PARSER": "llm",
"LLM_MODEL": "google/gemini-2.5-flash-lite",
"LLM_CONCURRENCY": "5",
"LLM_DPI": "150"
},
"transport": "stdio"
}
}
}
Performance Tuning
High-Performance Setup:
{
"mcpServers": {
"pdfkb": {
"command": "uvx",
"args": ["pdfkb-mcp"],
"env": {
"OPENAI_API_KEY": "sk-key",
"PDF_PARSER": "mineru",
"KNOWLEDGEBASE_PATH": "/Volumes/FastSSD/Documents/PDFs",
"CACHE_DIR": "/Volumes/FastSSD/Documents/PDFs/.cache",
"EMBEDDING_BATCH_SIZE": "200",
"VECTOR_SEARCH_K": "15",
"FILE_SCAN_INTERVAL": "30"
},
"transport": "stdio"
}
}
}
Intelligent Caching
The server uses multi-stage caching:
- Parsing Cache: Stores converted markdown (
src/pdfkb/intelligent_cache.py:139) - Chunking Cache: Stores processed chunks
- Vector Cache: ChromaDB embeddings storage
Cache Invalidation Rules:
- Changing
PDF_PARSER→ Full reset (parsing + chunking + embeddings) - Changing
PDF_CHUNKER→ Partial reset (chunking + embeddings) - Changing
EMBEDDING_MODEL→ Minimal reset (embeddings only)
📚 Appendix
Installation Options
Primary (Recommended):
uvx pdfkb-mcp
With Specific Parser Dependencies:
uvx pdfkb-mcp[marker] # Marker parser
uvx pdfkb-mcp[mineru] # MinerU parser
uvx pdfkb-mcp[docling] # Docling parser
uvx pdfkb-mcp[llm] # LLM parser
uvx pdfkb-mcp[langchain] # LangChain chunker
Development Installation:
git clone https://github.com/juanqui/pdfkb-mcp.git
cd pdfkb-mcp
pip install -e ".[dev]"
Complete Environment Variables Reference
| Variable | Default | Description |
|---|---|---|
OPENAI_API_KEY |
required | OpenAI API key for embeddings |
OPENROUTER_API_KEY |
optional | Required for LLM parser |
KNOWLEDGEBASE_PATH |
./pdfs |
PDF directory path |
CACHE_DIR |
./.cache |
Cache directory |
PDF_PARSER |
marker |
PDF parser selection |
PDF_CHUNKER |
unstructured |
Chunking strategy |
CHUNK_SIZE |
1000 |
LangChain chunk size |
CHUNK_OVERLAP |
200 |
LangChain chunk overlap |
EMBEDDING_MODEL |
text-embedding-3-large |
OpenAI model |
EMBEDDING_BATCH_SIZE |
100 |
Embedding batch size |
VECTOR_SEARCH_K |
5 |
Default search results |
FILE_SCAN_INTERVAL |
60 |
File monitoring interval |
LOG_LEVEL |
INFO |
Logging level |
Parser Comparison Details
| Feature | PyMuPDF4LLM | Marker | MinerU | Docling | LLM |
|---|---|---|---|---|---|
| Speed | Fastest | Medium | Fast (GPU) | Medium | Slowest |
| Memory | Lowest | Medium | High | Medium | Lowest |
| Tables | Basic | Good | Excellent | Excellent | Excellent |
| Formulas | Basic | Good | Excellent | Good | Excellent |
| Images | Basic | Good | Good | Excellent | Excellent |
| Setup | Simple | Simple | Moderate | Simple | Simple |
| Cost | Free | Free | Free | Free | API costs |
Chunking Strategies
LangChain (PDF_CHUNKER=langchain):
- Header-aware splitting with
MarkdownHeaderTextSplitter - Configurable via
CHUNK_SIZEandCHUNK_OVERLAP - Best for customizable chunking
Unstructured (PDF_CHUNKER=unstructured):
- Intelligent semantic chunking with
unstructuredlibrary - Zero configuration required
- Best for document structure awareness
Troubleshooting Guide
API Key Issues:
- Verify key format starts with
sk- - Check account has sufficient credits
- Test connectivity:
curl -H "Authorization: Bearer $OPENAI_API_KEY" https://api.openai.com/v1/models
Parser Installation Issues:
- MinerU:
pip install mineru[all]and verifymineru --version - Docling:
pip install doclingfor basic,pip install pdfkb-mcp[docling-complete]for all features - LLM: Requires
OPENROUTER_API_KEYenvironment variable
Performance Optimization:
- Speed: Use
pymupdf4llmparser - Memory: Reduce
EMBEDDING_BATCH_SIZEandCHUNK_SIZE - Quality: Use
mineru(GPU) ordocling(CPU) - Tables: Use
doclingwithDOCLING_TABLE_MODE=ACCURATE
For additional support, see implementation details in src/pdfkb/main.py and src/pdfkb/config.py.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.