PathScan MCP Server

PathScan MCP Server

Enables website security scanning and vulnerability assessment by integrating dirsearch path scanning with firecrawl web scraping. Provides structured vulnerability reports categorized by risk level and detailed content analysis of high-risk URLs.

Category
Visit Server

README

使用方法

  1. 为dirsearch安装依赖: 进入dirsearch目录, 执行安装依赖的命令(这里我图省事, 选择把依赖安装在了全局环境中)

    pip install -r .\requirements.txt
    
  2. 在全局环境中再安装一个

    pip install setuptools
    
  3. 安装uv管理器: 这是一个极快的 Python 包和项目管理器,用 Rust 编写

    powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
    
  4. 为MCP服务安装依赖

    uv sync
    
  5. 在本地部署firecrawl: 这是一个AI爬虫工具, 包含有数据清晰的功能,支持本地docker部署. 参考文章:

    • https://www.cnblogs.com/skystrive/p/18893148
    • https://docs.firecrawl.dev/contributing/guide

    故障排除: 在使用本地部署的firecrawl进行网页爬取的时候, 返回Unauthorized的解决方法: 修改.env配置文件中的字段-> USE_DB_AUTHENTICATION的值设为false

    可以直接使用我给的.env文件

    测试你的firecrawl正在运行: 打开网址: http://{firecrawl server IP}:3002/test

    如果出现了Hello, world!, 则说明服务正常运行了

6.编辑你的config.py文件 FIRECRAWL_HOST是你的firecrawl运行的HOST地址 GLOBAL_PYTHON_PATH是你的全局Python地址-> 获取全局Python地址: 在cmd中输入where python

  1. 启动你的MCP服务

    uv run main.py
    

    alt text 出现如下日志说明你的服务启动成功了

  2. cline中添加这个服务

    直接编辑配置文件:

    {
       "mcpServers": {
          "path scanner": {
             "url": "http://127.0.0.1:8000/sse",
             "disabled": false,
             "autoApprove": [],
             "timeout": 1800
          }
       }
    }
    

    alt text

    这样就说明你的MCP server可以被cline使用了

Prompt

你是一个网站安全助手。请调用已有的MCP服务对指定网站进行扫描,并返回结构化结果(表格形式)。 根据MCP扫描结果: 提取并总结网站所使用的技术栈; 根据扫描报告中的风险等级,分类整理网站的漏洞信息(高危/中危/低危); 对于报告中标记为高危漏洞的相关URL,请进一步读取该URL的页面内容,并生成内容摘要; 最终请将数据汇总为以下结构输出: 技术栈 漏洞信息(按严重程度分类) 高危漏洞相关的URL及内容摘要 目标网站URL:

效果展示

alt text alt text alt text

TODO:

服务端尚未初始化完成就收到了客户端的请求, 解决办法: 在正式的使用服务之前init一下服务

参考:

此项目灵感来自于项目ai_dirscan

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured