parquet_mcp_server

parquet_mcp_server

Mirror of

MCP-Mirror

Research & Data
Visit Server

README

parquet_mcp_server

smithery badge

A powerful MCP (Model Control Protocol) server that provides tools for manipulating and analyzing Parquet files. This server is designed to work with Claude Desktop and offers five main functionalities:

  1. Text Embedding Generation: Convert text columns in Parquet files into vector embeddings using Ollama models
  2. Parquet File Analysis: Extract detailed information about Parquet files including schema, row count, and file size
  3. DuckDB Integration: Convert Parquet files to DuckDB databases for efficient querying and analysis
  4. PostgreSQL Integration: Convert Parquet files to PostgreSQL tables with pgvector support for vector similarity search
  5. Markdown Processing: Convert markdown files into chunked text with metadata, preserving document structure and links

This server is particularly useful for:

  • Data scientists working with large Parquet datasets
  • Applications requiring vector embeddings for text data
  • Projects needing to analyze or convert Parquet files
  • Workflows that benefit from DuckDB's fast querying capabilities
  • Applications requiring vector similarity search with PostgreSQL and pgvector

Installation

Installing via Smithery

To install Parquet MCP Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @DeepSpringAI/parquet_mcp_server --client claude

Clone this repository

git clone ...
cd parquet_mcp_server

Create and activate virtual environment

uv venv
.venv\Scripts\activate  # On Windows
source .venv/bin/activate  # On macOS/Linux

Install the package

uv pip install -e .

Environment

Create a .env file with the following variables:

EMBEDDING_URL=  # URL for the embedding service
OLLAMA_URL=    # URL for Ollama server
EMBEDDING_MODEL=nomic-embed-text  # Model to use for generating embeddings

# PostgreSQL Configuration
POSTGRES_DB=your_database_name
POSTGRES_USER=your_username
POSTGRES_PASSWORD=your_password
POSTGRES_HOST=localhost
POSTGRES_PORT=5432

Usage with Claude Desktop

Add this to your Claude Desktop configuration file (claude_desktop_config.json):

{
  "mcpServers": {
    "parquet-mcp-server": {
      "command": "uv",
      "args": [
        "--directory",
        "/home/${USER}/workspace/parquet_mcp_server/src/parquet_mcp_server",
        "run",
        "main.py"
      ]
    }
  }
}

Available Tools

The server provides five main tools:

  1. Embed Parquet: Adds embeddings to a specific column in a Parquet file

    • Required parameters:
      • input_path: Path to input Parquet file
      • output_path: Path to save the output
      • column_name: Column containing text to embed
      • embedding_column: Name for the new embedding column
      • batch_size: Number of texts to process in each batch (for better performance)
  2. Parquet Information: Get details about a Parquet file

    • Required parameters:
      • file_path: Path to the Parquet file to analyze
  3. Convert to DuckDB: Convert a Parquet file to a DuckDB database

    • Required parameters:
      • parquet_path: Path to the input Parquet file
    • Optional parameters:
      • output_dir: Directory to save the DuckDB database (defaults to same directory as input file)
  4. Convert to PostgreSQL: Convert a Parquet file to a PostgreSQL table with pgvector support

    • Required parameters:
      • parquet_path: Path to the input Parquet file
      • table_name: Name of the PostgreSQL table to create or append to
  5. Process Markdown: Convert markdown files into structured chunks with metadata

    • Required parameters:
      • file_path: Path to the markdown file to process
      • output_path: Path to save the output parquet file
    • Features:
      • Preserves document structure and links
      • Extracts section headers and metadata
      • Memory-optimized for large files
      • Configurable chunk size and overlap

Example Prompts

Here are some example prompts you can use with the agent:

For Embedding:

"Please embed the column 'text' in the parquet file '/path/to/input.parquet' and save the output to '/path/to/output.parquet'. Use 'embeddings' as the final column name and a batch size of 2"

For Parquet Information:

"Please give me some information about the parquet file '/path/to/input.parquet'"

For DuckDB Conversion:

"Please convert the parquet file '/path/to/input.parquet' to DuckDB format and save it in '/path/to/output/directory'"

For PostgreSQL Conversion:

"Please convert the parquet file '/path/to/input.parquet' to a PostgreSQL table named 'my_table'"

For Markdown Processing:

"Please process the markdown file '/path/to/input.md' and save the chunks to '/path/to/output.parquet'"

Testing the MCP Server

The project includes a comprehensive test suite in the src/tests directory. You can run all tests using:

python src/tests/run_tests.py

Or run individual tests:

# Test embedding functionality
python src/tests/test_embedding.py

# Test parquet information tool
python src/tests/test_parquet_info.py

# Test DuckDB conversion
python src/tests/test_duckdb_conversion.py

# Test PostgreSQL conversion
python src/tests/test_postgres_conversion.py

# Test Markdown processing
python src/tests/test_markdown_processing.py

You can also test the server using the client directly:

from parquet_mcp_server.client import (
    convert_to_duckdb, 
    embed_parquet, 
    get_parquet_info, 
    convert_to_postgres,
    process_markdown_file  # New markdown processing function
)

# Test DuckDB conversion
result = convert_to_duckdb(
    parquet_path="input.parquet",
    output_dir="db_output"
)

# Test embedding
result = embed_parquet(
    input_path="input.parquet",
    output_path="output.parquet",
    column_name="text",
    embedding_column="embeddings",
    batch_size=2
)

# Test parquet information
result = get_parquet_info("input.parquet")

# Test PostgreSQL conversion
result = convert_to_postgres(
    parquet_path="input.parquet",
    table_name="my_table"
)

# Test markdown processing
result = process_markdown_file(
    file_path="input.md",
    output_path="output.parquet"
)

Troubleshooting

  1. If you get SSL verification errors, make sure the SSL settings in your .env file are correct
  2. If embeddings are not generated, check:
    • The Ollama server is running and accessible
    • The model specified is available on your Ollama server
    • The text column exists in your input Parquet file
  3. If DuckDB conversion fails, check:
    • The input Parquet file exists and is readable
    • You have write permissions in the output directory
    • The Parquet file is not corrupted
  4. If PostgreSQL conversion fails, check:
    • The PostgreSQL connection settings in your .env file are correct
    • The PostgreSQL server is running and accessible
    • You have the necessary permissions to create/modify tables
    • The pgvector extension is installed in your database

API Response Format

The embeddings are returned in the following format:

{
    "object": "list",
    "data": [{
        "object": "embedding",
        "embedding": [0.123, 0.456, ...],
        "index": 0
    }],
    "model": "llama2",
    "usage": {
        "prompt_tokens": 4,
        "total_tokens": 4
    }
}

Each embedding vector is stored in the Parquet file as a NumPy array in the specified embedding column.

The DuckDB conversion tool returns a success message with the path to the created database file or an error message if the conversion fails.

The PostgreSQL conversion tool returns a success message indicating whether a new table was created or data was appended to an existing table.

The markdown chunking tool processes markdown files into chunks and saves them as a Parquet file with the following columns:

  • text: The text content of each chunk
  • metadata: Additional metadata about the chunk (e.g., headers, section info)

The tool returns a success message with the path to the created Parquet file or an error message if the processing fails.

Recommended Servers

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.

Featured
TypeScript
MCP PubMed Search

MCP PubMed Search

Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.

Featured
Python
dbt Semantic Layer MCP Server

dbt Semantic Layer MCP Server

A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.

Featured
TypeScript
mixpanel

mixpanel

Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Featured
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python
Nefino MCP Server

Nefino MCP Server

Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.

Official
Python
Vectorize

Vectorize

Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.

Official
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

A server that provides access to Mathematica documentation through FastMCP, enabling users to retrieve function documentation and list package symbols from Wolfram Mathematica.

Local
Python
kb-mcp-server

kb-mcp-server

An MCP server aimed to be portable, local, easy and convenient to support semantic/graph based retrieval of txtai "all in one" embeddings database. Any txtai embeddings db in tar.gz form can be loaded

Local
Python
Research MCP Server

Research MCP Server

The server functions as an MCP server to interact with Notion for retrieving and creating survey data, integrating with the Claude Desktop Client for conducting and reviewing surveys.

Local
Python