parquet_mcp_server
Mirror of
MCP-Mirror
README
parquet_mcp_server
A powerful MCP (Model Control Protocol) server that provides tools for manipulating and analyzing Parquet files. This server is designed to work with Claude Desktop and offers five main functionalities:
- Text Embedding Generation: Convert text columns in Parquet files into vector embeddings using Ollama models
- Parquet File Analysis: Extract detailed information about Parquet files including schema, row count, and file size
- DuckDB Integration: Convert Parquet files to DuckDB databases for efficient querying and analysis
- PostgreSQL Integration: Convert Parquet files to PostgreSQL tables with pgvector support for vector similarity search
- Markdown Processing: Convert markdown files into chunked text with metadata, preserving document structure and links
This server is particularly useful for:
- Data scientists working with large Parquet datasets
- Applications requiring vector embeddings for text data
- Projects needing to analyze or convert Parquet files
- Workflows that benefit from DuckDB's fast querying capabilities
- Applications requiring vector similarity search with PostgreSQL and pgvector
Installation
Installing via Smithery
To install Parquet MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @DeepSpringAI/parquet_mcp_server --client claude
Clone this repository
git clone ...
cd parquet_mcp_server
Create and activate virtual environment
uv venv
.venv\Scripts\activate # On Windows
source .venv/bin/activate # On macOS/Linux
Install the package
uv pip install -e .
Environment
Create a .env
file with the following variables:
EMBEDDING_URL= # URL for the embedding service
OLLAMA_URL= # URL for Ollama server
EMBEDDING_MODEL=nomic-embed-text # Model to use for generating embeddings
# PostgreSQL Configuration
POSTGRES_DB=your_database_name
POSTGRES_USER=your_username
POSTGRES_PASSWORD=your_password
POSTGRES_HOST=localhost
POSTGRES_PORT=5432
Usage with Claude Desktop
Add this to your Claude Desktop configuration file (claude_desktop_config.json
):
{
"mcpServers": {
"parquet-mcp-server": {
"command": "uv",
"args": [
"--directory",
"/home/${USER}/workspace/parquet_mcp_server/src/parquet_mcp_server",
"run",
"main.py"
]
}
}
}
Available Tools
The server provides five main tools:
-
Embed Parquet: Adds embeddings to a specific column in a Parquet file
- Required parameters:
input_path
: Path to input Parquet fileoutput_path
: Path to save the outputcolumn_name
: Column containing text to embedembedding_column
: Name for the new embedding columnbatch_size
: Number of texts to process in each batch (for better performance)
- Required parameters:
-
Parquet Information: Get details about a Parquet file
- Required parameters:
file_path
: Path to the Parquet file to analyze
- Required parameters:
-
Convert to DuckDB: Convert a Parquet file to a DuckDB database
- Required parameters:
parquet_path
: Path to the input Parquet file
- Optional parameters:
output_dir
: Directory to save the DuckDB database (defaults to same directory as input file)
- Required parameters:
-
Convert to PostgreSQL: Convert a Parquet file to a PostgreSQL table with pgvector support
- Required parameters:
parquet_path
: Path to the input Parquet filetable_name
: Name of the PostgreSQL table to create or append to
- Required parameters:
-
Process Markdown: Convert markdown files into structured chunks with metadata
- Required parameters:
file_path
: Path to the markdown file to processoutput_path
: Path to save the output parquet file
- Features:
- Preserves document structure and links
- Extracts section headers and metadata
- Memory-optimized for large files
- Configurable chunk size and overlap
- Required parameters:
Example Prompts
Here are some example prompts you can use with the agent:
For Embedding:
"Please embed the column 'text' in the parquet file '/path/to/input.parquet' and save the output to '/path/to/output.parquet'. Use 'embeddings' as the final column name and a batch size of 2"
For Parquet Information:
"Please give me some information about the parquet file '/path/to/input.parquet'"
For DuckDB Conversion:
"Please convert the parquet file '/path/to/input.parquet' to DuckDB format and save it in '/path/to/output/directory'"
For PostgreSQL Conversion:
"Please convert the parquet file '/path/to/input.parquet' to a PostgreSQL table named 'my_table'"
For Markdown Processing:
"Please process the markdown file '/path/to/input.md' and save the chunks to '/path/to/output.parquet'"
Testing the MCP Server
The project includes a comprehensive test suite in the src/tests
directory. You can run all tests using:
python src/tests/run_tests.py
Or run individual tests:
# Test embedding functionality
python src/tests/test_embedding.py
# Test parquet information tool
python src/tests/test_parquet_info.py
# Test DuckDB conversion
python src/tests/test_duckdb_conversion.py
# Test PostgreSQL conversion
python src/tests/test_postgres_conversion.py
# Test Markdown processing
python src/tests/test_markdown_processing.py
You can also test the server using the client directly:
from parquet_mcp_server.client import (
convert_to_duckdb,
embed_parquet,
get_parquet_info,
convert_to_postgres,
process_markdown_file # New markdown processing function
)
# Test DuckDB conversion
result = convert_to_duckdb(
parquet_path="input.parquet",
output_dir="db_output"
)
# Test embedding
result = embed_parquet(
input_path="input.parquet",
output_path="output.parquet",
column_name="text",
embedding_column="embeddings",
batch_size=2
)
# Test parquet information
result = get_parquet_info("input.parquet")
# Test PostgreSQL conversion
result = convert_to_postgres(
parquet_path="input.parquet",
table_name="my_table"
)
# Test markdown processing
result = process_markdown_file(
file_path="input.md",
output_path="output.parquet"
)
Troubleshooting
- If you get SSL verification errors, make sure the SSL settings in your
.env
file are correct - If embeddings are not generated, check:
- The Ollama server is running and accessible
- The model specified is available on your Ollama server
- The text column exists in your input Parquet file
- If DuckDB conversion fails, check:
- The input Parquet file exists and is readable
- You have write permissions in the output directory
- The Parquet file is not corrupted
- If PostgreSQL conversion fails, check:
- The PostgreSQL connection settings in your
.env
file are correct - The PostgreSQL server is running and accessible
- You have the necessary permissions to create/modify tables
- The pgvector extension is installed in your database
- The PostgreSQL connection settings in your
API Response Format
The embeddings are returned in the following format:
{
"object": "list",
"data": [{
"object": "embedding",
"embedding": [0.123, 0.456, ...],
"index": 0
}],
"model": "llama2",
"usage": {
"prompt_tokens": 4,
"total_tokens": 4
}
}
Each embedding vector is stored in the Parquet file as a NumPy array in the specified embedding column.
The DuckDB conversion tool returns a success message with the path to the created database file or an error message if the conversion fails.
The PostgreSQL conversion tool returns a success message indicating whether a new table was created or data was appended to an existing table.
The markdown chunking tool processes markdown files into chunks and saves them as a Parquet file with the following columns:
text
: The text content of each chunkmetadata
: Additional metadata about the chunk (e.g., headers, section info)
The tool returns a success message with the path to the created Parquet file or an error message if the processing fails.
Recommended Servers
Crypto Price & Market Analysis MCP Server
A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.
MCP PubMed Search
Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.
dbt Semantic Layer MCP Server
A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.
mixpanel
Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Nefino MCP Server
Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.
Vectorize
Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.
Mathematica Documentation MCP server
A server that provides access to Mathematica documentation through FastMCP, enabling users to retrieve function documentation and list package symbols from Wolfram Mathematica.
kb-mcp-server
An MCP server aimed to be portable, local, easy and convenient to support semantic/graph based retrieval of txtai "all in one" embeddings database. Any txtai embeddings db in tar.gz form can be loaded
Research MCP Server
The server functions as an MCP server to interact with Notion for retrieving and creating survey data, integrating with the Claude Desktop Client for conducting and reviewing surveys.