
Owner avatar beijing-car-quota-draw
Owner avatar beijing-car-quota-draw
README
Beijing Car Quota Lottery MCP Server
An MCP (Model Context Protocol) server that provides AI agents with the ability to query Beijing car quota lottery results. This server scrapes data from the Beijing Transportation Commission website and exposes search capabilities through a standardized MCP interface.
Features
- 🔍 Smart Search: Search by application code (申请编码) or partial ID number
- 📄 PDF Processing: Automatically parses different PDF formats (waiting lists and score rankings)
- 🌐 Web Scraping: Scrapes latest data from Beijing Transportation Commission website
- 🤖 AI Integration: Exposes functionality as MCP tools for AI agents like Claude, Cursor, etc.
- 💾 Data Persistence: Stores processed data locally with fast indexing
- 📊 Statistics: Provides insights into loaded data and search results
Tech Stack
- Language: Python 3.9+
- Web Framework: FastAPI
- MCP Framework: fastapi-mcp
- PDF Processing: pdfplumber
- Web Scraping: crawl4ai
- Dependency Management: uv
Installation
Prerequisites
- Python 3.9 or higher
- uv (recommended) or pip
Using uv (Recommended)
# Clone the repository
git clone <repository-url>
cd bjhjyd-mcp
# Install dependencies
uv sync
# Activate virtual environment
source .venv/bin/activate # On Windows: .venv\Scripts\activate
Using pip
# Clone the repository
git clone <repository-url>
cd bjhjyd-mcp
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -e .
Quick Start
1. Start the MCP Server
# Using the main module
python -m bjhjyd_mcp.main
# Or with custom settings
python -m bjhjyd_mcp.main --host 0.0.0.0 --port 8080 --log-level DEBUG
The server will start at http://127.0.0.1:8000
by default.
2. Access the API
- API Documentation: http://127.0.0.1:8000/docs
- MCP Endpoint: http://127.0.0.1:8000/mcp
- Health Check: http://127.0.0.1:8000/health
3. Configure AI Clients
For Cursor IDE
- Go to Settings → MCP → Add new MCP server
- Add this configuration:
{
"mcpServers": {
"Beijing Car Quota": {
"url": "http://127.0.0.1:8000/mcp"
}
}
}
For Claude Desktop
- Install mcp-proxy:
uv tool install mcp-proxy
- Configure in
claude_desktop_config.json
:
{
"mcpServers": {
"Beijing Car Quota": {
"command": "mcp-proxy",
"args": ["http://127.0.0.1:8000/mcp"]
}
}
}
Available MCP Tools
The server exposes the following tools for AI agents:
1. search_by_application_code
Search for quota results by application code (申请编码).
Parameters:
application_code
(string): The application code to search for
Example:
{
"application_code": "1437100439239"
}
2. search_by_id_number
Search for quota results by partial ID number (first 6 and last 4 digits).
Parameters:
id_prefix
(string): First 6 digits of ID numberid_suffix
(string): Last 4 digits of ID number
Example:
{
"id_prefix": "110228",
"id_suffix": "1240"
}
3. get_data_statistics
Get statistics about loaded quota data.
Returns: Information about total files, entries, and data breakdown.
4. refresh_data
Refresh quota data by scraping the latest PDFs from the website.
Parameters:
max_pages
(integer, optional): Maximum pages to scrape (default: 5)
5. list_data_files
List all loaded quota data files with metadata.
6. health_check
Check server health and status.
Data Formats
The server handles two types of PDF formats from the Beijing Transportation Commission:
1. Waiting List (轮候序号列表)
- Fields: 序号, 申请编码, 轮候时间
- Purpose: Time-based ordering for quota applications
2. Score Ranking (积分排序入围名单)
- Fields: 序号, 申请编码, 姓名, 身份证号, 家庭代际数, 积分, 注册时间
- Purpose: Score-based ranking with personal information
- Privacy: ID numbers are masked (e.g., 110228********1240)
Development
Project Structure
src/
├── bjhjyd_mcp/
│ ├── __init__.py
│ ├── main.py # Entry point
│ ├── models/ # Data models
│ │ ├── quota_result.py
│ ├── parsers/ # PDF parsing
│ │ ├── pdf_parser.py
│ ├── scrapers/ # Web scraping
│ │ ├── web_scraper.py
│ ├── server/ # MCP server
│ │ ├── mcp_server.py
│ ├── storage/ # Data storage
│ │ ├── data_store.py
│ └── utils/ # Utilities
│ ├── logging_config.py
└── tests/
├── unit/
└── integration/
Running Tests
# Run all tests
pytest
# Run with coverage
pytest --cov=src --cov-report=html
# Run specific test file
pytest src/tests/unit/test_pdf_parser.py
Code Quality
# Format code
black src/
# Sort imports
isort src/
# Type checking
mypy src/
# Linting
flake8 src/
Configuration
Environment Variables
LOG_LEVEL
: Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)DATA_DIR
: Directory for storing processed dataDOWNLOADS_DIR
: Directory for downloaded PDF files
Command Line Options
python -m bjhjyd_mcp.main --help
API Examples
Direct API Usage
import httpx
# Search by application code
response = httpx.post(
"http://127.0.0.1:8000/search/application-code",
json={"application_code": "1437100439239"}
)
print(response.json())
# Get statistics
response = httpx.get("http://127.0.0.1:8000/data/statistics")
print(response.json())
Using with AI Agents
Once configured, AI agents can use natural language to query the data:
- "Check if application code 1437100439239 won the lottery"
- "Search for ID number starting with 110228 and ending with 1240"
- "Show me the latest quota lottery statistics"
- "Refresh the data with new PDFs from the website"
Troubleshooting
Common Issues
-
Server won't start
- Check if port 8000 is available
- Verify all dependencies are installed
- Check logs for specific error messages
-
No data found
- Run
refresh_data
tool to scrape latest PDFs - Check if example PDFs exist in the
examples/
directory - Verify network connectivity for web scraping
- Run
-
PDF parsing errors
- Check PDF format compatibility
- Verify PDF files are not corrupted
- Review parsing logs for specific issues
Logging
Enable debug logging for detailed information:
python -m bjhjyd_mcp.main --log-level DEBUG --log-file logs/server.log
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Run the test suite
- Submit a pull request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Disclaimer
This tool is for educational and research purposes only. Please respect the Beijing Transportation Commission's terms of service and rate limits when scraping their website.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.