OwlOCR MCP

OwlOCR MCP

A macOS-based MCP server that enables high-accuracy text extraction from PDF and image files using the OwlOCR app or Apple's Vision Framework. It supports multi-language OCR and provides asynchronous tools for processing documents directly within MCP clients.

Category
Visit Server

README

OwlOCR MCP

Python 3.11+ macOS License: MIT

MCP (Model Context Protocol) server for PDF and image OCR on macOS. Supports two backends:

  • OwlOCR CLI - Higher accuracy (recommended)
  • Vision Framework - No external dependencies

Features

  • šŸ“„ PDF OCR - Extract text from PDF files page by page with separators
  • šŸ–¼ļø Image OCR - Extract text from PNG, JPEG, and other image formats
  • šŸŒ Multi-language - Korean + English by default (configurable)
  • šŸ”„ Dual Backend - Auto-selects OwlOCR if available, falls back to Vision Framework
  • ⚔ Async - Non-blocking execution for MCP clients

Benchmark Results

Tested on a 4-page Korean theological document with Hebrew text:

Metric Vision Framework OwlOCR CLI
Time 9.87s 9.30s
Time/Page 2.47s 2.33s
Word Accuracy 85.62% 91.79%
Character Accuracy 94.46% 95.07%

Winner: OwlOCR CLI - Faster and more accurate.

Requirements

  • macOS (uses Apple Vision Framework / OwlOCR.app)
  • Python 3.11+
  • OwlOCR.app (optional, for better accuracy)

Installation

Using uv (recommended)

git clone https://github.com/yourusername/owlocr-mcp.git
cd owlocr-mcp
uv sync

Using pip

git clone https://github.com/yourusername/owlocr-mcp.git
cd owlocr-mcp
pip install -e .

MCP Client Configuration

Claude Desktop

Add to ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "owlocr": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/owlocr-mcp", "owlocr-mcp"]
    }
  }
}

Generic MCP Client

{
  "mcpServers": {
    "owlocr": {
      "command": "/path/to/owlocr-mcp/.venv/bin/python",
      "args": ["-m", "owlocr_mcp.server"]
    }
  }
}

Available Tools

ocr_pdf_to_text

Extract text from a PDF file.

Parameters:

Parameter Type Default Description
pdf_path string required Absolute path to the PDF file
pages list[int] null Page numbers to process (1-based). If null, all pages
dpi int 200 Resolution for rendering. Higher = better quality but slower
backend string "auto" "auto", "owlocr", or "vision"
languages list[string] null Language codes (Vision only). Default: ["ko-KR", "en-US"]

Example:

Extract text from /Users/me/document.pdf using OwlOCR

Output:

첫 번째 ķŽ˜ģ“ģ§€ ė‚“ģš©...

===== Page 2 =====

두 번째 ķŽ˜ģ“ģ§€ ė‚“ģš©...

--- OCR Complete: 2 page(s) processed using OwlOCR CLI ---

ocr_image_to_text

Extract text from an image file.

Parameters:

Parameter Type Default Description
image_path string required Absolute path to the image file
backend string "auto" "auto", "owlocr", or "vision"
languages list[string] null Language codes (Vision only)

check_ocr_backends

Check available OCR backends on the system.

Output:

OCR Backend Status:

āœ… Vision Framework: Available (macOS built-in)
āœ… OwlOCR CLI: Available (/Applications/OwlOCR.app)

Recommendation: Use backend='owlocr' for best accuracy

Backend Selection

Backend Accuracy Speed Requirements
owlocr ⭐⭐⭐⭐⭐ ⭐⭐⭐⭐ OwlOCR.app installed
vision ⭐⭐⭐⭐ ⭐⭐⭐⭐ None (macOS built-in)
auto Best available - Uses OwlOCR if available

Running the Benchmark

Compare backends on your own PDF:

# Both backends
uv run python benchmark.py /path/to/your.pdf

# With accuracy comparison (requires ground truth)
uv run python benchmark.py /path/to/your.pdf --show-text

# Specific backend only
uv run python benchmark.py /path/to/your.pdf --method owlocr
uv run python benchmark.py /path/to/your.pdf --method vision

Project Structure

owlocr-mcp/
ā”œā”€ā”€ src/owlocr_mcp/
│   ā”œā”€ā”€ __init__.py
│   ā”œā”€ā”€ server.py        # MCP server with tools
│   ā”œā”€ā”€ ocr.py           # Vision Framework backend
│   ā”œā”€ā”€ ocr_owlocr.py    # OwlOCR CLI backend
│   └── pdf.py           # PDF processing utilities
ā”œā”€ā”€ benchmark.py          # Performance comparison script
ā”œā”€ā”€ pyproject.toml
└── README.md

How It Works

OwlOCR Backend

  1. Render PDF pages to PNG using pypdfium2
  2. Copy images to OwlOCR sandbox: ~/Library/Containers/JonLuca-DeCaro.OwlOCR/Data/tmp/
  3. Run CLI: /Applications/OwlOCR.app/Contents/MacOS/OwlOCR --cli --input <file>
  4. Combine results with page separators

Vision Framework Backend

  1. Render PDF pages to PNG using pypdfium2
  2. Load as CIImage via PyObjC
  3. Create VNRecognizeTextRequest with accurate recognition level
  4. Process with VNImageRequestHandler
  5. Sort results by position and combine

Troubleshooting

"OwlOCR.app not found"

Install OwlOCR from owlocr.com or use backend="vision".

File picker dialog appears

This happens when OwlOCR can't access files outside its sandbox. The MCP server handles this by copying files to the sandbox temp directory automatically.

Poor accuracy on specific languages

For Vision Framework, specify languages explicitly:

ocr_pdf_to_text(pdf_path, languages=["ja-JP", "en-US"])

Supported language codes: ko-KR, en-US, ja-JP, zh-Hans, zh-Hant, etc.

License

MIT License - see LICENSE file.

Acknowledgments

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured