OpenSCAD MCP Server

OpenSCAD MCP Server

Enables AI assistants to render 3D models from OpenSCAD code, generating single views or multiple perspectives with full camera control. Supports animations, custom parameters, and returns base64-encoded PNG images for seamless integration.

Category
Visit Server

README

OpenSCAD MCP Server

MCP Version FastMCP Test Status License

A production-ready Model Context Protocol (MCP) server that provides OpenSCAD 3D rendering capabilities to AI assistants and LLM applications. Built with FastMCP for robust, scalable performance.

🎯 Zero-Installation Execution

Run directly from GitHub without any setup:

uv run --with git+https://github.com/quellant/openscad-mcp.git openscad-mcp

Perfect for MCP clients, CI/CD pipelines, and instant deployment scenarios!

🚀 Quick Start

Zero-Installation Execution with uv

No installation required! Run directly from GitHub:

# Run via script entry point (recommended)
uv run --with git+https://github.com/quellant/openscad-mcp.git openscad-mcp

# Or run as Python module
uv run --with git+https://github.com/quellant/openscad-mcp.git python -m openscad_mcp

Traditional Installation (Optional)

# Clone and run locally
git clone https://github.com/quellant/openscad-mcp.git
cd openscad-mcp
uv run openscad-mcp

Configure with Claude Desktop

Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

Option 1: Direct from GitHub (Recommended)

{
  "mcpServers": {
    "openscad": {
      "command": "uv",
      "args": ["run", "--with", "git+https://github.com/quellant/openscad-mcp.git", "openscad-mcp"],
      "env": {
        "OPENSCAD_PATH": "/usr/bin/openscad"
      }
    }
  }
}

Option 2: Local Installation

{
  "mcpServers": {
    "openscad": {
      "command": "uv",
      "args": ["run", "openscad-mcp"],
      "cwd": "/path/to/openscad-mcp",
      "env": {
        "OPENSCAD_PATH": "/usr/bin/openscad"
      }
    }
  }
}

🔒 Security: --allowedTools Requirement

IMPORTANT: When using the OpenSCAD MCP server with Claude CLI or other MCP clients, you MUST explicitly grant permissions using the --allowedTools flag for security. This prevents unauthorized tool usage and ensures controlled access to server capabilities.

Required Permissions

The OpenSCAD MCP server requires explicit permission for each tool:

  • openscad-mcp:check_openscad - Permission to check OpenSCAD installation
  • openscad-mcp:render_single - Permission to render single views
  • openscad-mcp:render_perspectives - Permission to render multiple perspectives

Example Usage with Claude CLI

# Start the server with uv and grant permissions
# (Create mcp-config.json with uv configuration first)

# Grant permission for a single tool
claude --config mcp-config.json \
       --allowedTools openscad-mcp:check_openscad \
       "Check if OpenSCAD is installed"

# Grant permission for multiple tools
claude --config mcp-config.json \
       --allowedTools openscad-mcp:check_openscad,openscad-mcp:render_single \
       "Render a cube with dimensions 30x30x30"

# Grant full permissions for all OpenSCAD tools
claude --config mcp-config.json \
       --allowedTools openscad-mcp:check_openscad,openscad-mcp:render_single,openscad-mcp:render_perspectives \
       "Create a gear model and show it from multiple angles"

Create mcp-config.json for Claude CLI:

{
  "mcpServers": {
    "openscad-mcp": {
      "command": "uv",
      "args": ["run", "--with", "git+https://github.com/quellant/openscad-mcp.git", "openscad-mcp"],
      "env": {
        "OPENSCAD_PATH": "/usr/bin/openscad"
      }
    }
  }
}

Testing with Permissions

Use the provided test script to verify proper permission configuration:

# Run all permission tests
./test_claude_with_permissions.sh all

# Test individual tools
./test_claude_with_permissions.sh check        # Test check_openscad only
./test_claude_with_permissions.sh single       # Test render_single only
./test_claude_with_permissions.sh perspectives # Test render_perspectives only

# Launch interactive session with full permissions
./test_claude_with_permissions.sh interactive

# Show usage examples
./test_claude_with_permissions.sh examples

✨ Features

  • 🎯 Production-Ready: 100% test success rate with comprehensive integration testing
  • 🔧 Single View Rendering: Render OpenSCAD models from any camera angle with full control
  • 📐 Multiple Perspectives: Generate standard orthographic and isometric views automatically
  • 🎬 Animation Support: Create turntable animations for 360° model visualization
  • ⚡ Async Processing: Non-blocking renders using FastMCP framework for optimal performance
  • 🖼️ Base64 Encoding: Images returned as base64-encoded PNGs for seamless integration
  • ✅ Verified Compatibility: Fully compatible with FastMCP 2.11.3 and Pydantic 2.11.7

📋 Prerequisites

No additional Python packages required when using uv - all dependencies are handled automatically!

📦 Installation

Method 1: Zero-Installation with uv (Recommended)

No installation required! Just run directly:

# Run directly from GitHub - uv handles everything automatically
uv run --with git+https://github.com/quellant/openscad-mcp.git openscad-mcp

# All dependencies (FastMCP 2.11.3, Pydantic 2.11.7, etc.) are resolved and installed automatically

Method 2: Local Development with uv

# Clone for local development
git clone https://github.com/quellant/openscad-mcp.git
cd openscad-mcp

# Run with uv (installs dependencies automatically)
uv run openscad-mcp

# Or run as module
uv run python -m openscad_mcp

Method 3: Traditional pip Installation

# Only if you can't use uv
git clone https://github.com/quellant/openscad-mcp.git
cd openscad-mcp
pip install -e .
python -m openscad_mcp

⚙️ Configuration

Environment Variables

Create a .env file in the project root:

# OpenSCAD Configuration
OPENSCAD_PATH=/usr/bin/openscad  # Path to OpenSCAD executable
OPENSCAD_TIMEOUT=30               # Timeout for rendering operations (seconds)

# Server Configuration
MCP_SERVER_NAME=openscad-mcp
MCP_SERVER_VERSION=1.0.0
MCP_SERVER_TRANSPORT=stdio        # Transport: stdio, sse, or http

# Rendering Configuration
MCP_RENDER_MAX_CONCURRENT=4       # Max concurrent renders
MCP_RENDER_DEFAULT_WIDTH=800      # Default image width
MCP_RENDER_DEFAULT_HEIGHT=600     # Default image height

Configuration File (Optional)

Create config.yaml for advanced configuration:

server:
  name: "OpenSCAD MCP Server"
  version: "1.0.0"
  transport: stdio

openscad:
  timeout: 30
  default_color_scheme: "Cornfield"

rendering:
  max_concurrent: 4
  default_width: 800
  default_height: 600

🛠️ Available MCP Tools

1. render_single

Render a single view of an OpenSCAD model with complete camera control.

Parameters:

Parameter Type Required Description
scad_content string No* OpenSCAD code to render
scad_file string No* Path to .scad file
camera_position [x,y,z] No Camera position (default: [30,30,30])
camera_target [x,y,z] No Look-at point (default: [0,0,0])
camera_up [x,y,z] No Up vector (default: [0,0,1])
image_size [w,h] No Image dimensions in pixels
color_scheme string No OpenSCAD color scheme
variables dict No Variables to pass to OpenSCAD
auto_center bool No Auto-center the model

*Either scad_content or scad_file must be provided

Example Request:

{
  "tool": "render_single",
  "arguments": {
    "scad_content": "cube([10, 10, 10]);",
    "camera_position": [30, 30, 30],
    "image_size": [800, 600],
    "color_scheme": "Cornfield"
  }
}

Example Response:

{
  "success": true,
  "image": "...",
  "metadata": {
    "width": 800,
    "height": 600,
    "render_time": 1.23
  }
}

2. render_perspectives

Generate multiple standard views of a model (front, back, left, right, top, bottom, isometric).

Parameters:

Parameter Type Required Description
scad_content string No* OpenSCAD code to render
scad_file string No* Path to .scad file
distance float No Camera distance from origin
image_size [w,h] No Image dimensions for each view
variables dict No Variables to pass to OpenSCAD
views list No Specific views to render

Example Request:

{
  "tool": "render_perspectives",
  "arguments": {
    "scad_file": "model.scad",
    "views": ["front", "isometric", "top"],
    "distance": 200,
    "image_size": [400, 400]
  }
}

3. check_openscad

Verify OpenSCAD installation and get version information.

Parameters:

Parameter Type Required Description
include_paths bool No Include searched paths in response

Example Request:

{
  "tool": "check_openscad",
  "arguments": {
    "include_paths": true
  }
}

📚 MCP Resources

resource://server/info

Get server configuration and capabilities.

Returns:

  • Server version and status
  • OpenSCAD version and path
  • Rendering capabilities
  • Active operations count
  • Configuration details

🏗️ Architecture

The server implements a clean architecture pattern:

┌─────────────────────────────────────┐
│         MCP Client (Claude)         │
└─────────────────────────────────────┘
                    │
                    ▼
┌─────────────────────────────────────┐
│    FastMCP Server (Presentation)    │
│        - MCP Protocol Handler       │
│        - Tool Decorators            │
└─────────────────────────────────────┘
                    │
                    ▼
┌─────────────────────────────────────┐
│     Application Layer (Business)    │
│        - Rendering Logic            │
│        - Parameter Validation       │
└─────────────────────────────────────┘
                    │
                    ▼
┌─────────────────────────────────────┐
│   Infrastructure Layer (External)   │
│        - OpenSCAD CLI               │
│        - File I/O Operations        │
└─────────────────────────────────────┘

🧪 Testing

The server has achieved 100% test success rate across all integration tests:

# Run comprehensive test suite
python comprehensive_test.py

# Run MCP tools integration test
python test_mcp_tools.py

# Run server startup test
python test_server_startup.py

See Test Report for detailed results.

🔧 Development

Project Structure

openscad-mcp-server/
├── src/
│   └── openscad_mcp/
│       ├── __init__.py         # Package initialization
│       ├── __main__.py          # Entry point
│       ├── server.py            # FastMCP server implementation
│       ├── types.py             # Pydantic models & types
│       └── utils/
│           └── config.py        # Configuration management
├── tests/                       # Test suite
├── pyproject.toml              # Project configuration
├── README.md                   # This file
├── CHANGELOG.md               # Version history
├── API.md                     # Detailed API documentation
└── .env.example               # Environment template

Extending the Server

To add new rendering capabilities:

  1. Define parameter types in types.py:
class CustomRenderParams(BaseModel):
    # Your parameters here
    pass
  1. Add tool function in server.py:
@mcp.tool
async def custom_render(params: CustomRenderParams) -> RenderResult:
    """Your custom rendering logic"""
    # Implementation
    pass
  1. Update documentation in API.md

🐛 Troubleshooting

OpenSCAD Not Found

# Check OpenSCAD installation
which openscad

# Set environment variable
export OPENSCAD_PATH=/path/to/openscad

# Or add to .env file
OPENSCAD_PATH=/usr/local/bin/openscad

Permission Errors

# Ensure execute permissions
chmod +x /path/to/openscad

Rendering Timeouts

Increase timeout in configuration:

export OPENSCAD_TIMEOUT=60  # 60 seconds

FastMCP Compatibility Issues

Ensure correct versions:

pip install fastmcp==2.11.3 pydantic==2.11.7

📈 Performance

  • Single view rendering: ~1-3 seconds (complexity dependent)
  • Multiple perspectives: ~5-10 seconds for 8 views
  • Base64 encoding: < 0.1s overhead
  • Memory footprint: ~50 MB base + 10-20 MB per render
  • Concurrent renders: Up to 4 (configurable)

🚦 Production Status

Ready for Production

  • All tests passing (100% success rate)
  • FastMCP 2.11.3 compatibility verified
  • Comprehensive error handling
  • Async operation support
  • Resource management implemented
  • Documentation complete

📝 License

MIT License - See LICENSE file for details

🤝 Contributing

Contributions are welcome! Please:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📮 Support

🙏 Acknowledgments


Version: 1.0.0 | Status: Production Ready | Last Updated: 2025-08-25

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured