Open MCP Server
A modular productivity automation server providing reusable prompt templates, composable skills, and multi-step workflows for tasks like daily planning, code review, document summarization, and project management.
README
Open MCP Server
A modular Model Context Protocol (MCP) server with Prompts, Skills, and Workflows for personal productivity automation.
Features
Core Components
- 6 Prompt Templates - Reusable, parameterizable prompts for common tasks
- 11 Skills - Pre-defined task sequences that compose multiple tools
- 9 Workflows - Multi-step automation pipelines with conditionals and loops
- 15+ Tools - File operations, web scraping, git operations, system info, and AI summarization
Categories
- Productivity: Daily planning, task prioritization, briefings
- Development: Code review, project setup, refactoring guidance
- Research: Topic exploration, document summarization
- Document: File analysis, text summarization, word counting
Quick Start
# Install dependencies
npm install
# Build the project
npm run build
# Start the server
npm start
Server Resources
| Resource | Description |
|---|---|
prompts:// |
List all prompt templates |
prompt://{id} |
Get specific prompt template |
skills:// |
List all available skills |
skill://{id} |
Get specific skill details |
workflows:// |
List all workflows |
workflow://{id} |
Get specific workflow details |
server-info:// |
Server statistics and capabilities |
Available Tools
Prompt Management
list_prompts- List all prompts (optional category filter)search_prompts- Search prompts by query stringget_prompt- Get prompt template with parametersrender_prompt- Render a prompt with parametersvalidate_prompt- Validate prompt parametersget_prompt_categories- List all prompt categories
Skills (as Tools)
summarize_document- Read and summarize a fileanalyze_text- Read and analyze textsetup_project- Initialize a new projectdaily_briefing- Get daily productivity briefingproject_status- Get project status report- And 6 more...
Workflow Execution
execute_workflow- Execute a workflow by ID with variables
Original Tools
- File:
read_file,write_file,list_directory,search_files - Web:
fetch_url,scrape_html - Dev:
git_status,git_log,git_diff,system_info,get_time - AI:
summarize
Configuration
Command-line Arguments
node dist/index.js /path/to/workspace /home/user/documents
Environment Variables
GOOGLE_GENERATIVE_AI_API_KEY- Required for AI summarization features
Usage with Conductor
Add this MCP server to Conductor:
claude mcp add open-mcp -s user -- node /Users/sdluffy/conductor/workspaces/playground/san-jose/open-mcp/dist/index.js
Or add to your conductor.json:
{
"mcpServers": {
"open-mcp": {
"command": "node",
"args": ["/Users/sdluffy/conductor/workspaces/playground/san-jose/open-mcp/dist/index.js"]
}
}
}
Project Structure
open-mcp/
├── src/
│ ├── index.ts # Main entry point
│ ├── core/ # Core engines
│ │ ├── prompt-manager.ts # Prompt template management
│ │ ├── skill-executor.ts # Skill execution engine
│ │ ├── workflow-engine.ts # Workflow engine with conditionals
│ │ └── registry.ts # Central component registry
│ ├── prompts/ # Prompt templates (YAML)
│ │ ├── productivity/
│ │ ├── code/
│ │ └── research/
│ ├── skills/ # Skill definitions
│ │ ├── categories/
│ │ │ ├── document.ts
│ │ │ ├── development.ts
│ │ │ └── productivity.ts
│ │ └── skills.ts # Skill registry
│ ├── workflows/ # Workflow definitions
│ │ ├── definitions/
│ │ │ ├── daily-routine.ts
│ │ │ ├── code-review.ts
│ │ │ └── project-setup.ts
│ │ └── workflows.ts # Workflow registry
│ ├── tools/ # Original tools
│ ├── types/ # TypeScript definitions
│ └── utils/ # Utilities
└── prompts/ # YAML prompt templates
Forked Dependencies
We maintain forks of key dependencies for customization:
| Repository | Fork | Purpose |
|---|---|---|
| @modelcontextprotocol/typescript-sdk | ishuru/typescript-sdk | MCP SDK modifications |
| openai/openai-openapi | ishuru/openai-openapi | OpenAI API spec |
Contributing to Forks
- Make changes in your fork
- Open a PR to the upstream repository
- Reference the open-mcp issue you're solving
Development
# Watch mode
npm run dev
# Build
npm run build
# Run with output
npm run dev:full
Adding New Prompts
Create a YAML file in prompts/{category}/:
id: my_prompt
name: My Prompt
description: Description
category: productivity
template: |
Your template here with {{variables}}
parameters:
- name: variable
type: string
required: true
Adding New Skills
Create a skill in src/skills/categories/{category}.ts:
export const mySkill: Skill = {
id: "my_skill",
name: "My Skill",
description: "Description",
category: "my_category",
tools: [
{ tool: "tool_name", parameters: {...} }
],
inputSchema: { type: "object", properties: {...} },
outputSchema: { type: "object", properties: {...} }
};
Adding New Workflows
Create a workflow in src/workflows/definitions/{name}.ts:
export const myWorkflow: Workflow = {
id: "my_workflow",
name: "My Workflow",
description: "Description",
steps: [
{ id: "step1", type: "tool", name: "Step 1", config: {...} }
]
};
Architecture
┌─────────────────────────────────────────────────────────────────┐
│ MCP Client (Claude) │
└─────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ MCP Server (stdio) │
│ ┌───────────────────────────────────────────────────────────┐ │
│ │ Tool Registry │ │
│ │ ┌───────────┐ ┌───────────┐ ┌─────────────────────┐ │ │
│ │ │ Prompts │ │ Skills │ │ Workflows │ │ │
│ │ │ (Resource)│ │ (Tools) │ │ (Tools) │ │ │
│ │ └─────┬─────┘ └─────┬─────┘ └──────────┬──────────┘ │ │
│ └────────┼─────────────┼──────────────────┼─────────────────┘ │
│ │ │ │ │
│ ┌────────┼─────────────┼──────────────────┼─────────────────┐ │
│ │ ▼ ▼ ▼ │ │
│ │ ┌─────────┐ ┌─────────────┐ ┌──────────────────┐ │ │
│ │ │ Prompt │ │ Skill │ │ Workflow │ │ │
│ │ │ Manager │ │ Executor │ │ Engine │ │ │
│ │ └────┬────┘ └──────┬──────┘ └────────┬─────────┘ │ │
│ │ │ │ │ │ │
│ │ ▼ ▼ ▼ │ │
│ │ ┌─────────────────────────────────────────────────┐ │ │
│ │ │ Existing Tools │ │ │
│ │ │ file-tools | web-tools | dev-tools | ai-tools │ │ │
│ │ └─────────────────────────────────────────────────┘ │ │
│ └───────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────┘
Security
- Path validation with allowed directories whitelist
- Command injection prevention
- Timeout protection on HTTP requests
- Directory traversal attack prevention
License
MIT License - see LICENSE for details
Links
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.