Open MCP Server

Open MCP Server

A modular productivity automation server providing reusable prompt templates, composable skills, and multi-step workflows for tasks like daily planning, code review, document summarization, and project management.

Category
Visit Server

README

Open MCP Server

A modular Model Context Protocol (MCP) server with Prompts, Skills, and Workflows for personal productivity automation.

Features

Core Components

  • 6 Prompt Templates - Reusable, parameterizable prompts for common tasks
  • 11 Skills - Pre-defined task sequences that compose multiple tools
  • 9 Workflows - Multi-step automation pipelines with conditionals and loops
  • 15+ Tools - File operations, web scraping, git operations, system info, and AI summarization

Categories

  • Productivity: Daily planning, task prioritization, briefings
  • Development: Code review, project setup, refactoring guidance
  • Research: Topic exploration, document summarization
  • Document: File analysis, text summarization, word counting

Quick Start

# Install dependencies
npm install

# Build the project
npm run build

# Start the server
npm start

Server Resources

Resource Description
prompts:// List all prompt templates
prompt://{id} Get specific prompt template
skills:// List all available skills
skill://{id} Get specific skill details
workflows:// List all workflows
workflow://{id} Get specific workflow details
server-info:// Server statistics and capabilities

Available Tools

Prompt Management

  • list_prompts - List all prompts (optional category filter)
  • search_prompts - Search prompts by query string
  • get_prompt - Get prompt template with parameters
  • render_prompt - Render a prompt with parameters
  • validate_prompt - Validate prompt parameters
  • get_prompt_categories - List all prompt categories

Skills (as Tools)

  • summarize_document - Read and summarize a file
  • analyze_text - Read and analyze text
  • setup_project - Initialize a new project
  • daily_briefing - Get daily productivity briefing
  • project_status - Get project status report
  • And 6 more...

Workflow Execution

  • execute_workflow - Execute a workflow by ID with variables

Original Tools

  • File: read_file, write_file, list_directory, search_files
  • Web: fetch_url, scrape_html
  • Dev: git_status, git_log, git_diff, system_info, get_time
  • AI: summarize

Configuration

Command-line Arguments

node dist/index.js /path/to/workspace /home/user/documents

Environment Variables

  • GOOGLE_GENERATIVE_AI_API_KEY - Required for AI summarization features

Usage with Conductor

Add this MCP server to Conductor:

claude mcp add open-mcp -s user -- node /Users/sdluffy/conductor/workspaces/playground/san-jose/open-mcp/dist/index.js

Or add to your conductor.json:

{
  "mcpServers": {
    "open-mcp": {
      "command": "node",
      "args": ["/Users/sdluffy/conductor/workspaces/playground/san-jose/open-mcp/dist/index.js"]
    }
  }
}

Project Structure

open-mcp/
├── src/
│   ├── index.ts                 # Main entry point
│   ├── core/                    # Core engines
│   │   ├── prompt-manager.ts    # Prompt template management
│   │   ├── skill-executor.ts    # Skill execution engine
│   │   ├── workflow-engine.ts   # Workflow engine with conditionals
│   │   └── registry.ts          # Central component registry
│   ├── prompts/                 # Prompt templates (YAML)
│   │   ├── productivity/
│   │   ├── code/
│   │   └── research/
│   ├── skills/                  # Skill definitions
│   │   ├── categories/
│   │   │   ├── document.ts
│   │   │   ├── development.ts
│   │   │   └── productivity.ts
│   │   └── skills.ts            # Skill registry
│   ├── workflows/               # Workflow definitions
│   │   ├── definitions/
│   │   │   ├── daily-routine.ts
│   │   │   ├── code-review.ts
│   │   │   └── project-setup.ts
│   │   └── workflows.ts         # Workflow registry
│   ├── tools/                   # Original tools
│   ├── types/                   # TypeScript definitions
│   └── utils/                   # Utilities
└── prompts/                     # YAML prompt templates

Forked Dependencies

We maintain forks of key dependencies for customization:

Repository Fork Purpose
@modelcontextprotocol/typescript-sdk ishuru/typescript-sdk MCP SDK modifications
openai/openai-openapi ishuru/openai-openapi OpenAI API spec

Contributing to Forks

  1. Make changes in your fork
  2. Open a PR to the upstream repository
  3. Reference the open-mcp issue you're solving

Development

# Watch mode
npm run dev

# Build
npm run build

# Run with output
npm run dev:full

Adding New Prompts

Create a YAML file in prompts/{category}/:

id: my_prompt
name: My Prompt
description: Description
category: productivity
template: |
  Your template here with {{variables}}
parameters:
  - name: variable
    type: string
    required: true

Adding New Skills

Create a skill in src/skills/categories/{category}.ts:

export const mySkill: Skill = {
  id: "my_skill",
  name: "My Skill",
  description: "Description",
  category: "my_category",
  tools: [
    { tool: "tool_name", parameters: {...} }
  ],
  inputSchema: { type: "object", properties: {...} },
  outputSchema: { type: "object", properties: {...} }
};

Adding New Workflows

Create a workflow in src/workflows/definitions/{name}.ts:

export const myWorkflow: Workflow = {
  id: "my_workflow",
  name: "My Workflow",
  description: "Description",
  steps: [
    { id: "step1", type: "tool", name: "Step 1", config: {...} }
  ]
};

Architecture

┌─────────────────────────────────────────────────────────────────┐
│                         MCP Client (Claude)                     │
└─────────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────────┐
│                      MCP Server (stdio)                         │
│  ┌───────────────────────────────────────────────────────────┐  │
│  │                    Tool Registry                          │  │
│  │  ┌───────────┐ ┌───────────┐ ┌─────────────────────┐     │  │
│  │  │  Prompts  │ │  Skills   │ │     Workflows       │     │  │
│  │  │ (Resource)│ │  (Tools)  │ │      (Tools)        │     │  │
│  │  └─────┬─────┘ └─────┬─────┘ └──────────┬──────────┘     │  │
│  └────────┼─────────────┼──────────────────┼─────────────────┘  │
│           │             │                  │                      │
│  ┌────────┼─────────────┼──────────────────┼─────────────────┐  │
│  │        ▼             ▼                  ▼                  │  │
│  │  ┌─────────┐ ┌─────────────┐ ┌──────────────────┐        │  │
│  │  │ Prompt  │ │   Skill     │ │   Workflow       │        │  │
│  │  │ Manager │ │  Executor   │ │    Engine        │        │  │
│  │  └────┬────┘ └──────┬──────┘ └────────┬─────────┘        │  │
│  │       │              │                  │                  │  │
│  │       ▼              ▼                  ▼                  │  │
│  │  ┌─────────────────────────────────────────────────┐     │  │
│  │  │            Existing Tools                       │     │  │
│  │  │  file-tools | web-tools | dev-tools | ai-tools │     │  │
│  │  └─────────────────────────────────────────────────┘     │  │
│  └───────────────────────────────────────────────────────────┘  │
└─────────────────────────────────────────────────────────────────┘

Security

  • Path validation with allowed directories whitelist
  • Command injection prevention
  • Timeout protection on HTTP requests
  • Directory traversal attack prevention

License

MIT License - see LICENSE for details

Links

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured