OParl MCP Server
Provides AI models with seamless access to OParl parliamentary data APIs through the Model Context Protocol. Enables natural language queries for parliamentary meetings, documents, organizations, representatives, and other government data across multiple OParl implementations.
README
<div align="center">
OParl MCP Server
<img src="assets/images/oparl-logo.png" alt="OParl Logo" width="120" height="120" style="margin-right: 20px;"> <img src="assets/images/fastmcp-logo.png" alt="FastMCP Logo" width="200" height="80">
A Model Context Protocol (MCP) server for accessing OParl parliamentary data APIs
📚 Documentation • 🚀 Quick Start • 🏛️ OParl API • 🔧 Configuration • 🐳 Docker
</div>
⚠️ Project Status
This project is currently in development and requires additional validation and testing. While the core functionality is implemented, it has not been thoroughly tested in production environments. Please use with caution and report any issues you encounter.
🎯 Overview
The OParl MCP Server provides AI models and applications with seamless access to OParl parliamentary data APIs through the Model Context Protocol. It enables natural language queries and structured access to parliamentary information systems across multiple implementations.
✨ Features
- 🔌 MCP Integration: Full Model Context Protocol compliance
- 🏛️ OParl 1.1 Support: Complete support for all OParl object types
- 🌐 Multi-Implementation: Works with various OParl implementations
- 🔐 Authentication: Flexible API key and Bearer token support
- 📊 Rich Data Access: Parliamentary meetings, documents, organizations, and more
- 🔍 Advanced Search: Query parameters and filtering capabilities
- 🐳 Docker Ready: Containerized deployment with Docker Compose
- 🧪 Comprehensive Testing: Unit tests and integration tests included
- 📚 Extensive Documentation: Complete API reference and usage guides
🏛️ OParl API
The server provides access to all standard OParl 1.1 object types:
| Object Type | Description | Key Properties |
|---|---|---|
| System | Root system information | oparlVersion, body, created |
| Body | Parliamentary bodies | name, shortName, organization |
| Organization | Political parties & groups | name, shortName, member |
| Person | Representatives & officials | name, givenName, familyName |
| Meeting | Parliamentary sessions | name, start, end, location |
| AgendaItem | Meeting topics | name, meeting, order |
| Paper | Documents & resolutions | name, reference, date |
| Consultation | Public consultations | name, paper, start, end |
| File | Attachments & media | name, mimeType, accessUrl |
| Location | Meeting venues | name, geojson, postalCode |
🚀 Quick Start
Prerequisites
- Python 3.11 or higher
- pip (Python package manager)
Installation
-
Clone the repository
git clone https://github.com/jtwolfe/oparl-mcp-server.git cd oparl-mcp-server -
Create a virtual environment
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate -
Install dependencies
pip install -r requirements.txt -
Run the server
python -m oparl_mcp.server
Development Setup
For development, install additional dependencies:
pip install -r requirements-dev.txt
⚙️ Configuration
The server can be configured using environment variables or programmatically:
Environment Variables
export OPARL_BASE_URL="https://api.oparl.org"
export OPARL_API_KEY="your-api-key" # Optional
export OPARL_TIMEOUT="30.0"
export OPARL_LOG_LEVEL="INFO"
export OPARL_SERVER_NAME="OParl MCP Server"
Programmatic Configuration
from oparl_mcp import OParlConfig, OParlMCPServer
# Create configuration
config = OParlConfig(
base_url="https://oparl.muenchen.de",
api_key="your-munich-api-key",
timeout=60.0,
server_name="Munich OParl Server"
)
# Create and run server
server = OParlMCPServer(config)
server.run()
🌍 OParl Implementations
The server works with various OParl implementations:
| Implementation | URL | Description |
|---|---|---|
| Generic OParl API | https://api.oparl.org |
Standard OParl implementation |
| Munich City Council | https://oparl.muenchen.de |
Munich parliamentary data |
| Cologne City Council | https://oparl.koeln.de |
Cologne parliamentary data |
| Hamburg Parliament | https://oparl.hamburg.de |
Hamburg parliamentary data |
Each implementation may have different:
- Authentication requirements
- Available data
- API endpoints
- Rate limits
🐳 Docker
Using Docker Compose
-
Create environment file
cp .env.example .env # Edit .env with your configuration -
Run with Docker Compose
docker-compose -f docker/docker-compose.yml up -d
Using Docker directly
# Build the image
docker build -f docker/Dockerfile -t oparl-mcp-server .
# Run the container
docker run -p 8000:8000 \
-e OPARL_BASE_URL=https://api.oparl.org \
-e OPARL_API_KEY=your-key \
oparl-mcp-server
📖 Usage Examples
Basic MCP Client Usage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
async def main():
async with stdio_client(StdioServerParameters(
command="python",
args=["-m", "oparl_mcp.server"]
)) as (read, write):
async with ClientSession(read, write) as session:
# List all meetings
meetings = await session.list_resources()
print(f"Found {len(meetings)} resources")
# Get specific meeting
meeting = await session.read_resource("oparl_meeting_123")
print(f"Meeting: {meeting['name']}")
Advanced Configuration
from oparl_mcp import OParlMCPServer, OParlConfig
# Custom configuration for Munich
config = OParlConfig(
base_url="https://oparl.muenchen.de",
api_key="your-munich-api-key",
timeout=45.0,
server_name="Munich OParl MCP Server"
)
server = OParlMCPServer(config)
info = server.get_server_info()
print(f"Server: {info['name']}")
print(f"Features: {info['features']}")
🧪 Testing
Run the comprehensive test suite:
# Run all tests
pytest
# Run with coverage
pytest --cov=oparl_mcp --cov-report=html
# Run specific test file
pytest tests/test_server.py
# Run integration tests
python test_integration.py
📚 Documentation
Comprehensive documentation is available at https://jtwolfe.github.io/oparl-mcp-server/:
- Getting Started - Quick setup and basic usage
- OParl API Guide - Complete OParl API reference
- FastMCP Integration - Technical integration details
- Architecture - System design and data flow
- API Reference - Complete API documentation
- Contributing - Development and contribution guide
🔧 MCP Components
Resources
- System Information: Root system data and metadata
- Body Collections: Lists of parliamentary bodies
- Meeting Schedules: Upcoming and past meetings
- Document Collections: Papers and reports
- Person Profiles: Elected officials and staff
Resource Templates
- Individual Objects: Specific meetings, people, papers, etc.
- Parameterized Access: Dynamic resource access with IDs
- Structured Data: Consistent data format across all objects
Tools
- Search Operations: Find specific data across the system
- Filter Operations: Filter data by various criteria
- Export Operations: Export data in different formats
🏗️ Architecture
The server uses FastMCP to transform the OParl API into MCP-compatible components:
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ AI Model │ │ MCP Client │ │ MCP Server │
│ │◄──►│ │◄──►│ (FastMCP) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│
▼
┌─────────────────┐
│ OParl API │
│ (HTTP/REST) │
└─────────────────┘
🤝 Contributing
We welcome contributions! Please see our Contributing Guide for details.
Development Setup
- Fork the repository
- Create a feature branch:
git checkout -b feature/new-feature - Install development dependencies:
pip install -r requirements-dev.txt - Make your changes
- Add tests for new functionality
- Run the test suite:
pytest - Submit a pull request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- OParl Initiative for the standardized parliamentary data API
- FastMCP for the excellent MCP framework
- Model Context Protocol for the AI integration standard
- The open-source community for inspiration and support
📞 Support
- Documentation: https://jtwolfe.github.io/oparl-mcp-server/
- Issues: GitHub Issues
- Discussions: GitHub Discussions
🔗 Related Projects
- OParl Specification - Official OParl documentation
- FastMCP Framework - MCP server generation framework
- Model Context Protocol - AI integration standard
<div align="center">
Made with ❤️ for open government and AI accessibility
</div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.