Ollama Pydantic Project
Created sample project for pydantic agent with local ollama model with mcp server integration.
jageenshukla
README
Ollama Pydantic Project
This project demonstrates how to use a local Ollama model with the Pydantic agent framework to create an intelligent agent. The agent is connected to an MCP server to utilize tools and provides a user-friendly interface using Streamlit.
Overview
The main goal of this project is to showcase:
- Local Ollama Model Integration: Using a locally hosted Ollama model for generating responses.
- Pydantic Agent Framework: Creating an agent with Pydantic for data validation and interaction.
- MCP Server Connection: Enabling the agent to use tools via an MCP server.
- Streamlit UI: Providing a web-based chatbot interface for user interaction.
Prerequisites
Before setting up the project, ensure the following:
- Python: Install Python 3.8 or higher. You can download it from python.org.
- Ollama Model: Install and run the Ollama server locally:
- Download the Ollama CLI from Ollama's official website.
- Install the CLI by following the instructions provided on their website.
- Start the Ollama server:
ollama serve - Ensure the server is running on
http://localhost:11434/v1.
- MCP Server: Set up an MCP server to enable agent tools. For more details, refer to MCP Server Sample.
Setup Instructions
Follow these steps to set up the project:
-
Clone the Repository:
git clone <repository-url> cd ollama-pydantic-project -
Create a Virtual Environment:
python3 -m venv venv -
Activate the Virtual Environment:
- On macOS/Linux:
source venv/bin/activate - On Windows:
venv\Scripts\activate
- On macOS/Linux:
-
Install Dependencies:
pip install -r requirements.txt -
Ensure the Ollama Server is Running: Start the Ollama server as described in the prerequisites.
-
Run the Application: Start the Streamlit application:
streamlit run src/streamlit_app.py
Usage
Once the application is running, open the provided URL in your browser (usually http://localhost:8501). You can interact with the chatbot by typing your queries in the input box. The agent will process your queries using the Ollama model and tools provided by the MCP server.
Example Interaction
Below is an example of how the chatbot interface looks when interacting with the agent:

Project Structure
The project is organized as follows:
ollama-pydantic-project/
├── src/
│ ├── streamlit_app.py # Main Streamlit application
│ ├── agents/
│ │ ├── base_agent.py # Abstract base class for agents
│ │ ├── ollama_agent.py # Implementation of the Ollama agent
│ ├── utils/
│ ├── config.py # Configuration settings
│ ├── logger.py # Logger utility
├── requirements.txt # Python dependencies
├── README.md # Project documentation
├── assets/
│ ├── ollama_agent_mcp_example.png # Example interaction image
├── .gitignore # Git ignore file
Features
- Streamlit Chatbot: A user-friendly chatbot interface.
- Ollama Model Integration: Uses a local Ollama model for generating responses.
- MCP Server Tools: Connects to an MCP server to enhance agent capabilities.
- Pydantic Framework: Ensures data validation and type safety.
Troubleshooting
- If you encounter issues with the Ollama server, ensure it is running on
http://localhost:11434/v1. - If dependencies fail to install, ensure you are using Python 3.8 or higher and that your virtual environment is activated.
- For MCP server-related issues, refer to the MCP Server Sample.
License
This project is licensed under the MIT License. See the LICENSE file for details.
Contributing
Contributions are welcome! Feel free to open issues or submit pull requests.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
MCP Package Docs Server
Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.
Claude Code MCP
An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.
@kazuph/mcp-taskmanager
Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.
Linear MCP Server
Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.
mermaid-mcp-server
A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.
Jira-Context-MCP
MCP server to provide Jira Tickets information to AI coding agents like Cursor
Linear MCP Server
A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.
Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.