octodet-elasticsearch-mcp

octodet-elasticsearch-mcp

Read/write Elasticsearch mcp server with many tools

Category
Visit Server

Tools

list_indices

List all available Elasticsearch indices with detailed information

get_mappings

Get field mappings for a specific Elasticsearch index

search

Perform an Elasticsearch search with the provided query DSL and highlighting

get_cluster_health

Get health information about the Elasticsearch cluster

get_shards

Get shard information for all or specific indices

add_document

Add a new document to a specific Elasticsearch index

update_document

Update an existing document in a specific Elasticsearch index

delete_document

Delete a document from a specific Elasticsearch index

update_by_query

Update documents in an Elasticsearch index based on a query

delete_by_query

Delete documents in an Elasticsearch index based on a query

bulk

Perform multiple document operations (create, update, delete) in a single API call

create_index

Create a new Elasticsearch index with optional settings and mappings

delete_index

Delete an Elasticsearch index

count_documents

Count documents in an index, optionally filtered by a query

get_templates

Get index templates from Elasticsearch

get_aliases

Get index aliases from Elasticsearch

README

Octodet Elasticsearch MCP Server

A Model Context Protocol (MCP) server for Elasticsearch operations, providing a comprehensive set of tools for interacting with Elasticsearch clusters through the standardized Model Context Protocol. This server enables LLM-powered applications to search, update, and manage Elasticsearch data.

<a href="https://glama.ai/mcp/servers/@Octodet/elasticsearch-mcp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@Octodet/elasticsearch-mcp/badge" alt="octodet-elasticsearch-mcp MCP server" /> </a>

Features

  • Complete Elasticsearch Operations: Full CRUD operations for documents and indices
  • Bulk Operations: Process multiple operations in a single API call
  • Query-Based Updates/Deletes: Modify or remove documents based on queries
  • Cluster Management: Monitor health, shards, and templates
  • Advanced Search: Full support for Elasticsearch DSL queries with highlighting

Installation

As an NPM Package

Install the package globally:

npm install -g @octodet/elasticsearch-mcp

Or use it directly with npx:

npx @octodet/elasticsearch-mcp

From Source

  1. Clone this repository
  2. Install dependencies:
npm install
  1. Build the server:
npm run build

Integration with MCP Clients

VS Code Integration

Add the following configuration to your VS Code settings.json to integrate with the VS Code MCP extension:

"mcp.servers": {
  "elasticsearch": {
    "command": "npx",
    "args": [
      "-y", "@octodet/elasticsearch-mcp"
    ],
    "env": {
      "ES_URL": "http://localhost:9200",
      "ES_API_KEY": "your_api_key",
      "ES_VERSION": "8"
    }
  }
}

Claude Desktop Integration

Configure in your Claude Desktop configuration file:

{
  "mcpServers": {
    "elasticsearch": {
      "command": "npx",
      "args": ["-y", "@octodet/elasticsearch-mcp"],
      "env": {
        "ES_URL": "http://localhost:9200",
        "ES_API_KEY": "your_api_key",
        "ES_VERSION": "8"
      }
    }
  }
}

For Local Development

If you're developing the MCP server locally, you can configure the clients to use your local build:

{
  "mcpServers": {
    "elasticsearch": {
      "command": "node",
      "args": ["path/to/build/index.js"],
      "env": {
        "ES_URL": "http://localhost:9200",
        "ES_API_KEY": "your_api_key",
        "ES_VERSION": "8"
      }
    }
  }
}

Configuration

The server uses the following environment variables for configuration:

Variable Description Default
ES_URL Elasticsearch server URL http://localhost:9200
ES_API_KEY API key for authentication
ES_USERNAME Username for authentication
ES_PASSWORD Password for authentication
ES_CA_CERT Path to custom CA certificate
ES_VERSION Elasticsearch version (8 or 9) 8
ES_SSL_SKIP_VERIFY Skip SSL verification false
ES_PATH_PREFIX Path prefix for Elasticsearch

Tools

The server provides 16 MCP tools for Elasticsearch operations. Each tool is documented with its required and optional parameters:

1. List Indices

List all available Elasticsearch indices with detailed information.

Parameters:

  • indexPattern (optional, string): Pattern to filter indices (e.g., "logs-", "my-index-")

Example:

{
  "indexPattern": "logs-*"
}

2. Get Mappings

Get field mappings for a specific Elasticsearch index.

Parameters:

  • index (required, string): The name of the index to get mappings for

Example:

{
  "index": "my-index"
}

3. Search

Perform an Elasticsearch search with the provided query DSL and highlighting.

Parameters:

  • index (required, string): The index or indices to search in (supports comma-separated values)
  • queryBody (required, object): The Elasticsearch query DSL body
  • highlight (optional, boolean): Enable search result highlighting (default: true)

Example:

{
  "index": "my-index",
  "queryBody": {
    "query": {
      "match": {
        "content": "search term"
      }
    },
    "size": 10,
    "from": 0,
    "sort": [{ "_score": { "order": "desc" } }]
  },
  "highlight": true
}

4. Get Cluster Health

Get health information about the Elasticsearch cluster.

Parameters:

  • None required

Example:

{}

5. Get Shards

Get shard information for all or specific indices.

Parameters:

  • index (optional, string): Specific index to get shard information for. If omitted, returns shards for all indices

Example:

{
  "index": "my-index"
}

6. Add Document

Add a new document to a specific Elasticsearch index.

Parameters:

  • index (required, string): The index to add the document to
  • document (required, object): The document content to add
  • id (optional, string): Document ID. If omitted, Elasticsearch will generate one automatically

Example:

{
  "index": "my-index",
  "id": "doc1",
  "document": {
    "title": "My Document",
    "content": "Document content here",
    "timestamp": "2025-06-23T10:30:00Z",
    "tags": ["important", "draft"]
  }
}

7. Update Document

Update an existing document in a specific Elasticsearch index.

Parameters:

  • index (required, string): The index containing the document
  • id (required, string): The ID of the document to update
  • document (required, object): The partial document with fields to update

Example:

{
  "index": "my-index",
  "id": "doc1",
  "document": {
    "title": "Updated Document Title",
    "last_modified": "2025-06-23T10:30:00Z"
  }
}

8. Delete Document

Delete a document from a specific Elasticsearch index.

Parameters:

  • index (required, string): The index containing the document
  • id (required, string): The ID of the document to delete

Example:

{
  "index": "my-index",
  "id": "doc1"
}

9. Update By Query

Update documents in an Elasticsearch index based on a query.

Parameters:

  • index (required, string): The index to update documents in
  • query (required, object): Elasticsearch query to match documents for update
  • script (required, object): Script to execute for updating matched documents
  • conflicts (optional, string): How to handle version conflicts ("abort" or "proceed", default: "abort")
  • refresh (optional, boolean): Whether to refresh the index after the operation (default: false)

Example:

{
  "index": "my-index",
  "query": {
    "term": {
      "status": "active"
    }
  },
  "script": {
    "source": "ctx._source.status = params.newStatus; ctx._source.updated_at = params.timestamp",
    "params": {
      "newStatus": "inactive",
      "timestamp": "2025-06-23T10:30:00Z"
    }
  },
  "conflicts": "proceed",
  "refresh": true
}

10. Delete By Query

Delete documents in an Elasticsearch index based on a query.

Parameters:

  • index (required, string): The index to delete documents from
  • query (required, object): Elasticsearch query to match documents for deletion
  • conflicts (optional, string): How to handle version conflicts ("abort" or "proceed", default: "abort")
  • refresh (optional, boolean): Whether to refresh the index after the operation (default: false)

Example:

{
  "index": "my-index",
  "query": {
    "range": {
      "created_date": {
        "lt": "2025-01-01"
      }
    }
  },
  "conflicts": "proceed",
  "refresh": true
}

11. Bulk Operations

Perform multiple document operations in a single API call for better performance.

Parameters:

  • operations (required, array): Array of operation objects, each containing:
    • action (required, string): The operation type ("index", "create", "update", or "delete")
    • index (required, string): The index for this operation
    • id (optional, string): Document ID (required for update/delete, optional for index/create)
    • document (conditional, object): Document content (required for index/create/update operations)

Example:

{
  "operations": [
    {
      "action": "index",
      "index": "my-index",
      "id": "doc1",
      "document": { "title": "Document 1", "content": "Content here" }
    },
    {
      "action": "update",
      "index": "my-index",
      "id": "doc2",
      "document": { "title": "Updated Title" }
    },
    {
      "action": "delete",
      "index": "my-index",
      "id": "doc3"
    }
  ]
}

12. Create Index

Create a new Elasticsearch index with optional settings and mappings.

Parameters:

  • index (required, string): The name of the index to create
  • settings (optional, object): Index settings like number of shards, replicas, etc.
  • mappings (optional, object): Field mappings defining how documents should be indexed

Example:

{
  "index": "new-index",
  "settings": {
    "number_of_shards": 3,
    "number_of_replicas": 1,
    "analysis": {
      "analyzer": {
        "custom_analyzer": {
          "type": "standard",
          "stopwords": "_english_"
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "title": {
        "type": "text",
        "analyzer": "custom_analyzer"
      },
      "created": {
        "type": "date",
        "format": "yyyy-MM-dd'T'HH:mm:ss'Z'"
      },
      "tags": {
        "type": "keyword"
      }
    }
  }
}

13. Delete Index

Delete an Elasticsearch index permanently.

Parameters:

  • index (required, string): The name of the index to delete

Example:

{
  "index": "my-index"
}

14. Count Documents

Count documents in an index, optionally filtered by a query.

Parameters:

  • index (required, string): The index to count documents in
  • query (optional, object): Elasticsearch query to filter documents for counting

Example:

{
  "index": "my-index",
  "query": {
    "bool": {
      "must": [
        { "term": { "status": "active" } },
        { "range": { "created_date": { "gte": "2025-01-01" } } }
      ]
    }
  }
}

15. Get Templates

Get index templates from Elasticsearch.

Parameters:

  • name (optional, string): Specific template name to retrieve. If omitted, returns all templates

Example:

{
  "name": "logs-template"
}

16. Get Aliases

Get index aliases from Elasticsearch.

Parameters:

  • name (optional, string): Specific alias name to retrieve. If omitted, returns all aliases

Example:

{
  "name": "logs-alias"
}

Development

Running in Development Mode

Run the server in watch mode during development:

npm run dev

Protocol Implementation

This server implements the Model Context Protocol to enable standardized communication between LLM clients and Elasticsearch. It provides a set of tools that can be invoked by MCP clients to perform various Elasticsearch operations.

Adding New Tools

To add a new tool to the server:

  1. Define the tool in src/index.ts using the MCP server's tool registration format
  2. Implement the necessary functionality in src/utils/elasticsearchService.ts
  3. Update this README to document the new tool

Other MCP Clients

This server can be used with any MCP-compatible client, including:

  • OpenAI's ChatGPT via MCP plugins
  • Anthropic's Claude Desktop
  • Claude in VS Code
  • Custom applications using the MCP SDK

Programmatic Usage

You can also use the server programmatically in your Node.js applications:

import { createOctodetElasticsearchMcpServer } from "@octodet/elasticsearch-mcp";
import { CustomTransport } from "@modelcontextprotocol/sdk/server";

// Configure the Elasticsearch connection
const config = {
  url: "http://localhost:9200",
  apiKey: "your_api_key",
  version: "8",
};

// Create and start the server
async function startServer() {
  const server = await createOctodetElasticsearchMcpServer(config);

  // Connect to your custom transport
  const transport = new CustomTransport();
  await server.connect(transport);

  console.log("Elasticsearch MCP server started");
}

startServer().catch(console.error);

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured