notebookLM2PPT

notebookLM2PPT

Enables AI models to convert NotebookLM PDF exports into high-quality PowerPoint presentations with automatic watermark removal and vector graphics preservation. It provides automated tools for slide conversion, metadata management, and document processing via the Model Context Protocol.

Category
Visit Server

README

English | 简体中文 | 繁體中文 | 日本語

notebookLM2PPT

PyPI version Python License: MIT GitHub stars

Convert PDF Slides to PowerPoint Presentations with Vector Graphics (highest resolution).

notebookLM2PPT Web UI

✨ Features

  • 🎯 Vector Graphics - Maintains highest resolution in generated PPT
  • 📝 Metadata Conversion - Preserves title, author and other metadata
  • 📐 Auto Detection - Automatically detects slide size and aspect ratio
  • 🚀 Easy to Use - Simple command line interface with beautiful output
  • 📄 Page Selection - Convert specific pages with --pages option
  • Parallel Processing - Speed up conversion with --parallel option
  • 🔍 Dependency Check - Automatically checks for required tools
  • 🎨 Web UI - Modern web interface with drag-and-drop support
  • 📡 REST API - FastAPI server with async processing
  • 🔧 MCP Support - Model Context Protocol for AI integration
  • 🐳 Docker Ready - All-in-one Docker image available
  • 💎 Glassmorphism Design - Ultra modern frosted glass UI with neon effects
  • 🌍 18 Languages - Full internationalization support

🌍 Supported Languages

Language Code Language Code
English en Italiano it
简体中文 zh-CN Русский ru
繁體中文 zh-TW العربية ar
日本語 ja हिन्दी hi
한국어 ko ไทย th
Français fr Tiếng Việt vi
Deutsch de Nederlands nl
Español es Polski pl
Português pt Türkçe tr

🎯 Motivation

  • LaTeX users can easily convert beamer slides from PDF to PPT
  • Typst users can easily convert touying slides from PDF to PPT

🚀 Quick Start

Option 1: Command Line (pipx)

# Install via pipx (recommended)
pipx install notebooklm2ppt

# Convert PDF to PPT
pdf2ppt input.pdf output.pptx

Option 2: Web UI (Docker)

For x86_64 / AMD64 (Linux servers, Intel Macs):

docker run -d -p 8100:8100 neosun/notebooklm2ppt:1.2.0-amd64

For ARM64 (Apple Silicon Macs, ARM servers):

docker run -d -p 8100:8100 neosun/notebooklm2ppt:1.2.0-arm64

Auto-detect architecture:

docker run -d -p 8100:8100 neosun/notebooklm2ppt:latest

Access at: http://localhost:8100

Option 3: API Server

# Install with server dependencies
pip install "notebooklm2ppt[server]"

# Start server
python -m uvicorn web.app:app --host 0.0.0.0 --port 8100

API Documentation: http://localhost:8100/docs

📦 Installation

Prerequisites

  • Python >= 3.9
  • pdf2svg - for PDF to SVG conversion
  • Inkscape - for SVG to EMF conversion

Install Dependencies

macOS:

brew install pdf2svg inkscape

Ubuntu/Debian:

sudo apt-get install pdf2svg inkscape

Windows:

Install notebookLM2PPT

# Recommended: Install with pipx (isolated environment)
pipx install notebooklm2ppt

# Or install with pip
pip install notebooklm2ppt

📖 Usage

Basic Usage

# Specify output file
pdf2ppt input.pdf output.pptx

# Auto-generate output filename (input.pptx)
pdf2ppt input.pdf

# Verbose mode
pdf2ppt input.pdf --verbose

Advanced Usage

# Convert specific pages
pdf2ppt input.pdf -p 1-5,7,9-11

# Parallel processing (4 workers)
pdf2ppt input.pdf -j 4

# Force overwrite existing file
pdf2ppt input.pdf output.pptx --force

# Keep temporary files for debugging
pdf2ppt input.pdf --no-clean

Command Line Options

usage: pdf2ppt [-h] [-v] [--verbose] [--no-clean] [--no-check] [--force]
               [--pages PAGES] [--parallel PARALLEL]
               [--pdf2svg-path PATH] [--inkscape-path PATH]
               input [output]

positional arguments:
  input                 Input PDF file
  output                Output PPTX file (default: input.pptx)

options:
  -h, --help            show this help message and exit
  -v, --version         show program's version number and exit
  --verbose             Verbose output
  --no-clean            Keep temporary files
  --no-check            Skip SVG filter check
  --force, -f           Overwrite output file if exists
  --pages, -p PAGES     Page range (e.g., "1-5,7,9-11")
  --parallel, -j N      Parallel workers (default: 1)
  --pdf2svg-path PATH   Path to pdf2svg executable
  --inkscape-path PATH  Path to inkscape executable

🔧 Technical Implementation

  1. Convert PDF to SVG using pdf2svg
  2. Convert SVG to EMF using inkscape (due to python-pptx limitations)
  3. Insert EMF into PPT using python-pptx

🛠️ Tech Stack

Component Technology
Language Python 3.9+
PDF Processing pypdf
PPT Generation python-pptx
PDF to SVG pdf2svg
SVG to EMF Inkscape
CLI Output rich

⚠️ Known Issues

Transparent Background

Elements with transparency are not fully supported due to dependency limitations. You will receive a warning when such issues are detected. You can manually copy the generated SVG to fix the problem.

See #1 for more details.

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

Copyright © 2023-2024 Teddy van Jerry (Wuqiong Zhao)

⭐ Star History

Star History Chart

📱 Follow Us

WeChat

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured