
NLSQL MCP Server
An MCP (Model Context Protocol) server that exposes natural language to SQL functionality, allowing any MCP-compatible client to convert plain English questions into SQL queries for database interaction using AI.
README
NLSQL MCP Server
An MCP (Model Context Protocol) server that exposes the functionality of the nl2sql Natural Language to SQL application as MCP tools. This allows any MCP-compatible client to convert natural language questions into SQL queries using AI.
Features
- Database Connection: Connect to SQLite, PostgreSQL, and MySQL databases
- Schema Analysis: Automatically analyze database structure and relationships
- Natural Language to SQL: Convert plain English questions to SQL queries using AI
- Query Execution: Execute SQL queries safely with configurable limits
- Query Validation: Validate SQL syntax before execution
- Sample Data: Access sample data from database tables
- Built-in Prompts: Pre-configured prompts for common database tasks
Prerequisites
- NLSQL Application: This MCP server is a wrapper around the nl2sql application. You must install nl2sql first.
- OpenAI API Key: Required for natural language to SQL conversion
- Python 3.8+: Compatible with Python 3.8 and above
Installation
Step 1: Install the NLSQL Application (Required)
This MCP server requires the original nl2sql application to be installed first.
# Clone the original nl2sql application
git clone https://github.com/tushar-badhwar/nl2sql.git
cd nl2sql
# Install dependencies
pip install -r requirements.txt
# Test the installation
streamlit run main.py
Step 2: Install the MCP Server
# Navigate to the same parent directory where nl2sql is located
cd .. # Now you should be in the directory containing nl2sql/
# Clone this MCP server
git clone https://github.com/tushar-badhwar/nlsql-mcp-server.git
cd nlsql-mcp-server
# Install MCP server dependencies
pip install -r requirements.txt
# Or install in development mode
pip install -e .
Step 3: Environment Setup
# Set your OpenAI API key
export OPENAI_API_KEY="your_api_key_here"
# Or create a .env file
echo "OPENAI_API_KEY=your_api_key_here" > .env
Step 4: Verify Directory Structure
Ensure your directory structure looks like this:
parent_directory/
├── nl2sql/ # Original nl2sql application (required dependency)
│ ├── main.py
│ ├── database_manager.py
│ ├── crew_setup.py
│ ├── agents.py
│ ├── tasks.py
│ └── nba.sqlite
└── nlsql-mcp-server/ # This MCP server
├── src/
├── tests/
├── README.md
└── requirements.txt
Important: The MCP server automatically looks for the nl2sql directory in the parent directory. If you have a different setup, you may need to adjust the path in src/nlsql_mcp_server/nlsql_client.py
.
Running the Server
Standalone Mode
# Run the server directly
python -m nlsql_mcp_server.server
# Or using the console script (after pip install)
nlsql-mcp-server
With MCP Client
Configure your MCP client to use this server. Example configuration:
{
"mcpServers": {
"nlsql": {
"command": "python",
"args": ["-m", "nlsql_mcp_server.server"],
"cwd": "/path/to/nlsql-mcp-server",
"env": {
"OPENAI_API_KEY": "your_api_key_here"
}
}
}
}
Available Tools
Database Connection Tools
connect_database
Connect to SQLite, PostgreSQL, or MySQL database.
Parameters:
db_type
(required): "sqlite", "postgresql", or "mysql"file_path
: Path to SQLite file (SQLite only)host
,port
,database
,username
,password
: Connection details (PostgreSQL/MySQL)
connect_sample_database
Connect to the built-in NBA sample database for testing.
Schema Analysis Tools
analyze_schema
Analyze database schema and structure using AI.
Parameters:
force_refresh
(optional): Force refresh of schema cache
get_database_info
Get detailed database information including tables, columns, and relationships.
get_table_sample
Get sample data from a specific table.
Parameters:
table_name
(required): Name of the tablelimit
(optional): Number of rows to return (default: 5)
Natural Language to SQL Tools
natural_language_to_sql
Convert natural language question to SQL query using AI.
Parameters:
question
(required): Natural language questionskip_schema
(optional): Skip schema analysis for faster processing
SQL Execution Tools
execute_sql_query
Execute SQL query on connected database.
Parameters:
sql_query
(required): SQL query to executelimit
(optional): Maximum rows to return (default: 100)
validate_sql_query
Validate SQL query syntax and structure.
Parameters:
sql_query
(required): SQL query to validate
Utility Tools
get_connection_status
Get current database connection status.
disconnect_database
Disconnect from current database.
Available Prompts
analyze_database
Comprehensive database analysis workflow.
generate_sql_query
Natural language to SQL generation workflow.
troubleshoot_sql
SQL query troubleshooting workflow.
Usage Examples
Using with Claude Desktop
-
Configure Claude Desktop to use this MCP server
-
Connect to a database:
Use the connect_sample_database tool to connect to the NBA sample database
-
Ask natural language questions:
Use the natural_language_to_sql tool with the question "How many teams are in the NBA?"
-
Execute queries:
Use the execute_sql_query tool to run the generated SQL
Example Workflow
- Connect:
connect_sample_database
- Analyze:
analyze_schema
- Query:
natural_language_to_sql
with question "List all teams from California" - Execute:
execute_sql_query
with the generated SQL - Explore:
get_table_sample
for additional data exploration
Advanced Usage
Custom Database Connection
{
"tool": "connect_database",
"arguments": {
"db_type": "postgresql",
"host": "localhost",
"port": 5432,
"database": "mydb",
"username": "user",
"password": "password"
}
}
Performance Optimization
- Use
skip_schema: true
innatural_language_to_sql
for faster queries after initial schema analysis - Set appropriate
limit
values for large result sets - Use
get_table_sample
to explore data before writing complex queries
Troubleshooting
Common Issues
-
"Could not find the nl2sql application" or "nlsql modules not found"
- Solution: Install the original nl2sql application first
- Command:
git clone https://github.com/tushar-badhwar/nl2sql.git
- Verify: Check that
nl2sql/database_manager.py
exists - Structure: Ensure both
nl2sql/
andnlsql-mcp-server/
are in the same parent directory
-
"OpenAI API key not found"
- Set the OPENAI_API_KEY environment variable
- Verify the API key is valid
-
Database connection failures
- Check database credentials and connectivity
- Ensure database server is running
- Verify firewall settings for remote databases
-
Import errors
- Install all required dependencies:
pip install -r requirements.txt
- Check Python version compatibility (3.8+)
- Install all required dependencies:
Debug Mode
Enable debug logging:
export PYTHONPATH=/path/to/nlsql-mcp-server/src
python -c "
import logging
logging.basicConfig(level=logging.DEBUG)
from nlsql_mcp_server.server import main
import asyncio
asyncio.run(main())
"
Testing
The repository includes comprehensive tests to verify your setup:
# Basic functionality test (no API key required)
python3 tests/test_basic.py
# Full setup validation
python3 tests/test_setup.py
# AI functionality test (requires OpenAI API key)
python3 tests/test_with_api.py
See tests/README.md for detailed testing documentation.
Development
Project Structure
src/
├── nlsql_mcp_server/
│ ├── __init__.py
│ ├── server.py # Main MCP server
│ ├── tools.py # MCP tool definitions
│ └── nlsql_client.py # Interface to nlsql app
├── pyproject.toml
└── requirements.txt
Adding New Tools
- Define the tool in
tools.py
- Add handler method in
NLSQLTools.call_tool()
- Implement the functionality in
nlsql_client.py
- Update documentation
Testing
# Install development dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Run type checking
mypy src/
# Format code
black src/
isort src/
License
MIT License - see LICENSE file for details.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
Support
For issues and questions:
- Create an issue in the GitHub repository
- Check the troubleshooting section above
- Review the nlsql application documentation
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.