NLSQL MCP Server

NLSQL MCP Server

An MCP (Model Context Protocol) server that exposes natural language to SQL functionality, allowing any MCP-compatible client to convert plain English questions into SQL queries for database interaction using AI.

Category
Visit Server

README

NLSQL MCP Server

An MCP (Model Context Protocol) server that exposes the functionality of the nl2sql Natural Language to SQL application as MCP tools. This allows any MCP-compatible client to convert natural language questions into SQL queries using AI.

Features

  • Database Connection: Connect to SQLite, PostgreSQL, and MySQL databases
  • Schema Analysis: Automatically analyze database structure and relationships
  • Natural Language to SQL: Convert plain English questions to SQL queries using AI
  • Query Execution: Execute SQL queries safely with configurable limits
  • Query Validation: Validate SQL syntax before execution
  • Sample Data: Access sample data from database tables
  • Built-in Prompts: Pre-configured prompts for common database tasks

Prerequisites

  1. NLSQL Application: This MCP server is a wrapper around the nl2sql application. You must install nl2sql first.
  2. OpenAI API Key: Required for natural language to SQL conversion
  3. Python 3.8+: Compatible with Python 3.8 and above

Installation

Step 1: Install the NLSQL Application (Required)

This MCP server requires the original nl2sql application to be installed first.

# Clone the original nl2sql application
git clone https://github.com/tushar-badhwar/nl2sql.git
cd nl2sql

# Install dependencies
pip install -r requirements.txt

# Test the installation
streamlit run main.py

Step 2: Install the MCP Server

# Navigate to the same parent directory where nl2sql is located
cd ..  # Now you should be in the directory containing nl2sql/

# Clone this MCP server
git clone https://github.com/tushar-badhwar/nlsql-mcp-server.git
cd nlsql-mcp-server

# Install MCP server dependencies
pip install -r requirements.txt

# Or install in development mode
pip install -e .

Step 3: Environment Setup

# Set your OpenAI API key
export OPENAI_API_KEY="your_api_key_here"

# Or create a .env file
echo "OPENAI_API_KEY=your_api_key_here" > .env

Step 4: Verify Directory Structure

Ensure your directory structure looks like this:

parent_directory/
├── nl2sql/                # Original nl2sql application (required dependency)
│   ├── main.py
│   ├── database_manager.py
│   ├── crew_setup.py
│   ├── agents.py
│   ├── tasks.py
│   └── nba.sqlite
└── nlsql-mcp-server/      # This MCP server
    ├── src/
    ├── tests/
    ├── README.md
    └── requirements.txt

Important: The MCP server automatically looks for the nl2sql directory in the parent directory. If you have a different setup, you may need to adjust the path in src/nlsql_mcp_server/nlsql_client.py.

Running the Server

Standalone Mode

# Run the server directly
python -m nlsql_mcp_server.server

# Or using the console script (after pip install)
nlsql-mcp-server

With MCP Client

Configure your MCP client to use this server. Example configuration:

{
  "mcpServers": {
    "nlsql": {
      "command": "python",
      "args": ["-m", "nlsql_mcp_server.server"],
      "cwd": "/path/to/nlsql-mcp-server",
      "env": {
        "OPENAI_API_KEY": "your_api_key_here"
      }
    }
  }
}

Available Tools

Database Connection Tools

connect_database

Connect to SQLite, PostgreSQL, or MySQL database.

Parameters:

  • db_type (required): "sqlite", "postgresql", or "mysql"
  • file_path: Path to SQLite file (SQLite only)
  • host, port, database, username, password: Connection details (PostgreSQL/MySQL)

connect_sample_database

Connect to the built-in NBA sample database for testing.

Schema Analysis Tools

analyze_schema

Analyze database schema and structure using AI.

Parameters:

  • force_refresh (optional): Force refresh of schema cache

get_database_info

Get detailed database information including tables, columns, and relationships.

get_table_sample

Get sample data from a specific table.

Parameters:

  • table_name (required): Name of the table
  • limit (optional): Number of rows to return (default: 5)

Natural Language to SQL Tools

natural_language_to_sql

Convert natural language question to SQL query using AI.

Parameters:

  • question (required): Natural language question
  • skip_schema (optional): Skip schema analysis for faster processing

SQL Execution Tools

execute_sql_query

Execute SQL query on connected database.

Parameters:

  • sql_query (required): SQL query to execute
  • limit (optional): Maximum rows to return (default: 100)

validate_sql_query

Validate SQL query syntax and structure.

Parameters:

  • sql_query (required): SQL query to validate

Utility Tools

get_connection_status

Get current database connection status.

disconnect_database

Disconnect from current database.

Available Prompts

analyze_database

Comprehensive database analysis workflow.

generate_sql_query

Natural language to SQL generation workflow.

troubleshoot_sql

SQL query troubleshooting workflow.

Usage Examples

Using with Claude Desktop

  1. Configure Claude Desktop to use this MCP server

  2. Connect to a database:

    Use the connect_sample_database tool to connect to the NBA sample database
    
  3. Ask natural language questions:

    Use the natural_language_to_sql tool with the question "How many teams are in the NBA?"
    
  4. Execute queries:

    Use the execute_sql_query tool to run the generated SQL
    

Example Workflow

  1. Connect: connect_sample_database
  2. Analyze: analyze_schema
  3. Query: natural_language_to_sql with question "List all teams from California"
  4. Execute: execute_sql_query with the generated SQL
  5. Explore: get_table_sample for additional data exploration

Advanced Usage

Custom Database Connection

{
  "tool": "connect_database",
  "arguments": {
    "db_type": "postgresql",
    "host": "localhost",
    "port": 5432,
    "database": "mydb",
    "username": "user",
    "password": "password"
  }
}

Performance Optimization

  • Use skip_schema: true in natural_language_to_sql for faster queries after initial schema analysis
  • Set appropriate limit values for large result sets
  • Use get_table_sample to explore data before writing complex queries

Troubleshooting

Common Issues

  1. "Could not find the nl2sql application" or "nlsql modules not found"

    • Solution: Install the original nl2sql application first
    • Command: git clone https://github.com/tushar-badhwar/nl2sql.git
    • Verify: Check that nl2sql/database_manager.py exists
    • Structure: Ensure both nl2sql/ and nlsql-mcp-server/ are in the same parent directory
  2. "OpenAI API key not found"

    • Set the OPENAI_API_KEY environment variable
    • Verify the API key is valid
  3. Database connection failures

    • Check database credentials and connectivity
    • Ensure database server is running
    • Verify firewall settings for remote databases
  4. Import errors

    • Install all required dependencies: pip install -r requirements.txt
    • Check Python version compatibility (3.8+)

Debug Mode

Enable debug logging:

export PYTHONPATH=/path/to/nlsql-mcp-server/src
python -c "
import logging
logging.basicConfig(level=logging.DEBUG)
from nlsql_mcp_server.server import main
import asyncio
asyncio.run(main())
"

Testing

The repository includes comprehensive tests to verify your setup:

# Basic functionality test (no API key required)
python3 tests/test_basic.py

# Full setup validation
python3 tests/test_setup.py

# AI functionality test (requires OpenAI API key)
python3 tests/test_with_api.py

See tests/README.md for detailed testing documentation.

Development

Project Structure

src/
├── nlsql_mcp_server/
│   ├── __init__.py
│   ├── server.py          # Main MCP server
│   ├── tools.py           # MCP tool definitions
│   └── nlsql_client.py    # Interface to nlsql app
├── pyproject.toml
└── requirements.txt

Adding New Tools

  1. Define the tool in tools.py
  2. Add handler method in NLSQLTools.call_tool()
  3. Implement the functionality in nlsql_client.py
  4. Update documentation

Testing

# Install development dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Run type checking
mypy src/

# Format code
black src/
isort src/

License

MIT License - see LICENSE file for details.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

Support

For issues and questions:

  • Create an issue in the GitHub repository
  • Check the troubleshooting section above
  • Review the nlsql application documentation

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured