neurodev-mcp

neurodev-mcp

NeuroDev MCP is a smart Model Context Protocol server for Python development. It performs deep code review, generates high-quality unit tests, runs test suites with coverage, and formats code automatically โ€” all through an AI assistant like Claude or Cline.

Category
Visit Server

README

<div align="center">

๐Ÿง  NeuroDev MCP Server

Intelligent Code Analysis, Test Generation & Execution

Python 3.8+ MCP License: MIT Tests

A powerful Model Context Protocol (MCP) server that supercharges your Python development workflow with AI-powered code review, intelligent test generation, and comprehensive test execution.

Features โ€ข Installation โ€ข Quick Start โ€ข Tools โ€ข Examples

</div>


โœจ Features

<table> <tr> <td width="50%">

๐Ÿ” Code Review

  • 6 Powerful Analyzers
    • pylint - Code quality & PEP8
    • flake8 - Style enforcement
    • mypy - Type checking
    • bandit - Security scanning
    • radon - Complexity metrics
    • AST - Custom inspections
  • Real-time issue detection
  • Security vulnerability scanning
  • Complexity & maintainability scores

</td> <td width="50%">

๐Ÿงช Test Generation

  • Intelligent AST Analysis
    • Auto-generate pytest tests
    • Happy path coverage
    • Edge case handling
    • Exception testing
    • Type validation tests
  • Supports functions & classes
  • Type-hint aware

</td> </tr> <tr> <td width="50%">

โ–ถ๏ธ Test Execution

  • Comprehensive Testing
    • Isolated environment
    • Coverage reporting
    • Line-by-line analysis
    • Timeout protection
  • Detailed pass/fail results
  • Performance metrics

</td> <td width="50%">

๐ŸŽจ Code Formatting

  • Auto-formatting
    • black - Opinionated style
    • autopep8 - PEP8 compliance
  • Configurable line length
  • Consistent code style
  • One-command formatting

</td> </tr> </table>


๐Ÿ“ฆ Installation

Quick Install

```bash

# Clone the repository
git clone https://github.com/ravikant1918/neurodev-mcp.git
cd neurodev-mcp

# Create virtual environment (recommended)
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\\Scripts\\activate

# Install the package
pip install -e .
\`\`\`

### **Verify Installation**

\`\`\`bash
# Run tests (should show 15/15 passing)
python test_installation.py

# Test the server
python -m neurodev_mcp.server
\`\`\`

<details>
<summary><b>๐Ÿ“ Project Structure</b> (click to expand)</summary>

\`\`\`
neurodev-mcp/
โ”œโ”€ neurodev_mcp/              # ๐Ÿ“ฆ Main package
โ”‚   โ”œโ”€ __init__.py            # Package exports
โ”‚   โ”œโ”€ server.py              # MCP server entry point
โ”‚   โ”œโ”€ analyzers/             # ๐Ÿ” Code analysis
โ”‚   โ”‚   โ”œโ”€ __init__.py
โ”‚   โ”‚   โ””โ”€ code_analyzer.py   # Multi-tool static analysis
โ”‚   โ”œโ”€ generators/            # ๐Ÿงช Test generation
โ”‚   โ”‚   โ”œโ”€ __init__.py
โ”‚   โ”‚   โ””โ”€ test_generator.py  # AST-based test creation
โ”‚   โ””โ”€ executors/             # โ–ถ๏ธ Test execution
โ”‚       โ”œโ”€ __init__.py
โ”‚       โ””โ”€ test_executor.py   # Test running & formatting
โ”œโ”€ pyproject.toml             # Project configuration
โ”œโ”€ README.md                  # This file
โ”œโ”€ test_installation.py       # Installation validator
โ”œโ”€ examples.py                # Usage examples
โ””โ”€ requirements.txt           # Dependencies

</details>


๐Ÿš€ Quick Start

Step 1: Configure Your MCP Client

<details open> <summary><b>๐Ÿ–ฅ๏ธ Claude Desktop</b></summary>

Edit ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "neurodev-mcp": {
      "command": "/absolute/path/to/neurodev-mcp/.venv/bin/python",
      "args": ["-m", "neurodev_mcp.server"]
    }
  }
}

๐Ÿ’ก Tip: Replace /absolute/path/to/neurodev-mcp with your actual path

</details>

<details> <summary><b>๐Ÿ”ง Cline (VSCode)</b></summary>

Add to your MCP settings:

{
  "neurodev-mcp": {
    "command": "python",
    "args": ["-m", "neurodev_mcp.server"]
  }
}

</details>

<details> <summary><b>๐Ÿ Standalone Usage</b></summary>

Run the server directly:

# Using the module
python -m neurodev_mcp.server

# Or as a command (if installed)
neurodev-mcp

</details>

Step 2: Restart Your Client

Restart Claude Desktop or reload VSCode to load the server.

Step 3: Start Using! ๐ŸŽ‰

Try these commands with your AI assistant:

  • "Review this Python code for issues"
  • "Generate unit tests for this function"
  • "Run these tests with coverage"
  • "Format this code to PEP8 standards"

๐ŸŒ Transport Options

NeuroDev MCP supports multiple transport protocols for different use cases:

STDIO (Default) - Local CLI

Perfect for local development with MCP clients like Claude Desktop or Cline:

# Default STDIO transport
neurodev-mcp

# Or explicitly specify STDIO
neurodev-mcp --transport stdio

Configuration (Claude Desktop):

{
  "mcpServers": {
    "neurodev-mcp": {
      "command": "neurodev-mcp",
      "args": ["--transport", "stdio"]
    }
  }
}

SSE (Server-Sent Events) - Web Integration

For web-based integrations and HTTP streaming:

# Run with SSE on default port (8000)
neurodev-mcp --transport sse

# Custom host and port
neurodev-mcp --transport sse --host 0.0.0.0 --port 3000

Endpoints:

  • SSE Stream: http://localhost:8000/sse
  • Messages: http://localhost:8000/messages (POST)

Web Client Example:

const sse = new EventSource('http://localhost:8000/sse');

sse.onmessage = (event) => {
  const data = JSON.parse(event.data);
  console.log('Received:', data);
};

// Send message
fetch('http://localhost:8000/messages', {
  method: 'POST',
  headers: { 'Content-Type': 'application/json' },
  body: JSON.stringify({
    method: 'tools/call',
    params: {
      name: 'code_review',
      arguments: { code: 'def test(): pass', analyzers: ['pylint'] }
    }
  })
});

Transport Comparison

Transport Use Case Best For
STDIO Local CLI clients Claude Desktop, Cline, local development
SSE Web integrations Browser apps, webhooks, remote clients

๐Ÿ› ๏ธ Available Tools

1. code_review

๐Ÿ” Comprehensive code analysis with multiple static analysis tools

Input:

{
  "code": "def calculate(x):\n    return x * 2",
  "analyzers": ["pylint", "flake8", "mypy", "bandit", "radon", "ast"]
}

Output:

  • Detailed issue reports from each analyzer
  • Security vulnerabilities
  • Complexity metrics
  • Code quality scores
  • Line-by-line suggestions

2. generate_tests

๐Ÿงช Intelligent pytest test generation using AST analysis

Input:

{
  "code": "def add(a: int, b: int) -> int:\n    return a + b",
  "module_name": "calculator",
  "save": false
}

Output:

  • Complete pytest test suite
  • Multiple test cases (happy path, edge cases, exceptions)
  • Type validation tests
  • Ready-to-run test code

3. run_tests

โ–ถ๏ธ Execute pytest tests with coverage reporting

Input:

{
  "test_code": "def test_add():\n    assert add(1, 2) == 3",
  "source_code": "def add(a, b):\n    return a + b",
  "timeout": 30
}

Output:

  • Pass/fail status
  • Coverage percentage
  • Line coverage details
  • Execution time
  • Detailed stdout/stderr

4. format_code

๐ŸŽจ Auto-format Python code to PEP8 standards

Input:

{
  "code": "def   messy(  x,y  ):\n        return x+y",
  "line_length": 88
}

Output:

  • Beautifully formatted code
  • PEP8 compliant
  • Consistent style
  • Change detection

๐Ÿ’ก Usage Examples

Example 1: Complete Code Review Workflow

You: "Review this code for issues and security problems"

[paste code]

AI: [Uses code_review tool]
    โ†’ Finds 3 style issues
    โ†’ Detects 1 security vulnerability
    โ†’ Suggests complexity improvements
    
You: "Fix those issues and show me the updated code"

AI: [Provides fixed code with explanations]

Example 2: Test Generation & Execution

You: "Generate tests for this function and run them"

def divide(a: float, b: float) -> float:
    if b == 0:
        raise ValueError("Cannot divide by zero")
    return a / b

AI: [Uses generate_tests tool]
    โ†’ Creates 5 test cases
    โ†’ Includes edge cases (zero, negative numbers)
    โ†’ Tests exception handling
    
    [Uses run_tests tool]
    โ†’ 5/5 tests passing โœ“
    โ†’ 100% code coverage
    โ†’ All edge cases handled

Example 3: Code Formatting

You: "Format this messy code"

def   calculate(  x,y,z  ):
        result=x+y+z
        if result>10:
                    return   True
        return False

AI: [Uses format_code tool]
    โ†’ Applies black formatting
    โ†’ Returns clean, PEP8-compliant code

def calculate(x, y, z):
    result = x + y + z
    if result > 10:
        return True
    return False

๐Ÿ“‹ Requirements

Package Version Purpose
mcp โ‰ฅ0.9.0 Model Context Protocol SDK
pylint โ‰ฅ3.0.0 Code quality analysis
flake8 โ‰ฅ7.0.0 Style checking
mypy โ‰ฅ1.7.0 Static type checking
bandit โ‰ฅ1.7.5 Security scanning
radon โ‰ฅ6.0.1 Complexity metrics
black โ‰ฅ23.12.0 Code formatting
autopep8 โ‰ฅ2.0.4 PEP8 formatting
pytest โ‰ฅ7.4.3 Testing framework
pytest-cov โ‰ฅ4.1.0 Coverage reporting
pytest-timeout โ‰ฅ2.2.0 Test timeouts

Python: 3.8 or higher


๐Ÿงช Development

Running Tests

# Run installation tests
python test_installation.py

# Run examples
python examples.py

# Run pytest (if you add tests)
pytest

Using as a Library

from neurodev_mcp import CodeAnalyzer, TestGenerator, TestExecutor
import asyncio

# Analyze code
code = "def hello(): print('world')"
result = asyncio.run(CodeAnalyzer.analyze_ast(code))

# Generate tests
tests = TestGenerator.generate_tests(code, "mymodule")

# Run tests
output = TestExecutor.run_tests(test_code, source_code)

โ“ Troubleshooting

<details> <summary><b>Server not appearing in MCP client?</b></summary>

  • โœ… Check that the path in config is absolute
  • โœ… Ensure the Python executable path is correct
  • โœ… Restart Claude Desktop or VSCode completely
  • โœ… Check server logs for errors

</details>

<details> <summary><b>Import or module errors?</b></summary>

# Reinstall the package
pip install -e .

# Verify installation
python -c "from neurodev_mcp import CodeAnalyzer; print('โœ“ OK')"

# Run installation tests
python test_installation.py

</details>

<details> <summary><b>Tests failing?</b></summary>

  • โœ… Ensure Python 3.8+ is installed
  • โœ… Activate virtual environment: source .venv/bin/activate
  • โœ… Reinstall dependencies: pip install -e .
  • โœ… Run: python test_installation.py to diagnose

</details>

<details> <summary><b>Performance issues?</b></summary>

  • Some analyzers (pylint, mypy) can be slow on large files
  • Use specific analyzers: "analyzers": ["flake8", "ast"]
  • Increase timeout for large test suites
  • Consider caching results (future feature)

</details>


๐Ÿค Contributing

Contributions are welcome! Here's how:

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes
  4. Run tests: python test_installation.py
  5. Commit: git commit -m 'Add amazing feature'
  6. Push: git push origin feature/amazing-feature
  7. Open a Pull Request

Future Enhancements

  • [ ] Additional analyzers (pydocstyle, vulture)
  • [ ] Result caching for performance
  • [ ] Configuration file support
  • [ ] Web dashboard
  • [ ] Multi-language support
  • [ ] CI/CD pipeline

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


๐Ÿ™ Acknowledgments


๐Ÿ“ž Support

  • ๐Ÿ“– Documentation: You're reading it!
  • ๐Ÿ› Issues: GitHub Issues
  • ๐Ÿ’ฌ Discussions: GitHub Discussions
  • ๐Ÿ“ง Email: team@neurodev.io

<div align="center">

Ready to supercharge your Python development! ๐Ÿš€

Made with โค๏ธ by the NeuroDev Team

โญ Star on GitHub โ€ข ๐Ÿ› Report Bug โ€ข โœจ Request Feature

</div>

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured