Neo4j MCP Server

Neo4j MCP Server

An MCP server that enables graph database interactions with Neo4j, allowing users to access and manipulate graph data through natural language commands.

ujjalcal

Databases
Knowledge & Memory
Search
Python
Visit Server

README

MCP Python SDK

which python
python3 -m venv myenv
source myenv/Scripts/activate
pip install -r requirements.txt
python fast_mcp_server.py

Usage

to run the client

add
    .env
    OPENAI_API_KEY=

to run the server

uvicorn ne04j_mcp_server:app --host 0.0.0.0 --port 8000

Data Prep

Insert Node:

CREATE (p1:Person {name: "Tom Hanks", birthYear: 1956})
CREATE (p2:Person {name: "Kevin Bacon", birthYear: 1958})
CREATE (m1:Movie {title: "Forrest Gump", releaseYear: 1994})
CREATE (m2:Movie {title: "Apollo 13", releaseYear: 1995})

Insert Relationship

MATCH (p:Person {name: "Tom Hanks"}), (m:Movie {title: "Forrest Gump"})
CREATE (p)-[:ACTED_IN]->(m)

MATCH (p:Person {name: "Tom Hanks"}), (m:Movie {title: "Apollo 13"})
CREATE (p)-[:ACTED_IN]->(m)

MATCH (p1:Person {name: "Tom Hanks"}), (p2:Person {name: "Kevin Bacon"})
CREATE (p1)-[:FRIENDS_WITH]->(p2)

Insert properties

MATCH (p:Person {name: "Tom Hanks"})
SET p.oscarsWon = 2

MATCH (m:Movie {title: "Forrest Gump"})
SET m.genre = "Drama"

MATCH (p:Person {name: "Tom Hanks"})-[r:ACTED_IN]->(m:Movie {title: "Forrest Gump"})
SET r.role = "Forrest Gump"

Insert Complex Structure

// Create a community and then match persons to add them to the community
CREATE (c1:Community {name: "Hollywood Stars"})
WITH c1
MATCH (p:Person)
WHERE p.name IN ["Tom Hanks", "Kevin Bacon"]
CREATE (p)-[:MEMBER_OF]->(c1)

other things - boiler plate - no clue - ignore for now.

<div align="center">

<strong>Python implementation of the Model Context Protocol (MCP)</strong>

PyPI MIT licensed Python Version Documentation Specification GitHub Discussions

</div>

<!-- omit in toc -->

Table of Contents

Overview

The Model Context Protocol allows applications to provide context for LLMs in a standardized way, separating the concerns of providing context from the actual LLM interaction. This Python SDK implements the full MCP specification, making it easy to:

  • Build MCP clients that can connect to any MCP server
  • Create MCP servers that expose resources, prompts and tools
  • Use standard transports like stdio and SSE
  • Handle all MCP protocol messages and lifecycle events

Installation

We recommend using uv to manage your Python projects:

uv add "mcp[cli]"

Alternatively:

pip install mcp

Quickstart

Let's create a simple MCP server that exposes a calculator tool and some data:

# server.py
from mcp.server.fastmcp import FastMCP

# Create an MCP server
mcp = FastMCP("Demo")

# Add an addition tool
@mcp.tool()
def add(a: int, b: int) -> int:
    """Add two numbers"""
    return a + b

# Add a dynamic greeting resource
@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
    """Get a personalized greeting"""
    return f"Hello, {name}!"

You can install this server in Claude Desktop and interact with it right away by running:

mcp install server.py

Alternatively, you can test it with the MCP Inspector:

mcp dev server.py

What is MCP?

The Model Context Protocol (MCP) lets you build servers that expose data and functionality to LLM applications in a secure, standardized way. Think of it like a web API, but specifically designed for LLM interactions. MCP servers can:

  • Expose data through Resources (think of these sort of like GET endpoints; they are used to load information into the LLM's context)
  • Provide functionality through Tools (sort of like POST endpoints; they are used to execute code or otherwise produce a side effect)
  • Define interaction patterns through Prompts (reusable templates for LLM interactions)
  • And more!

Core Concepts

Server

The FastMCP server is your core interface to the MCP protocol. It handles connection management, protocol compliance, and message routing:

# Add lifespan support for startup/shutdown with strong typing
from dataclasses import dataclass
from typing import AsyncIterator
from mcp.server.fastmcp import FastMCP

# Create a named server
mcp = FastMCP("My App")

# Specify dependencies for deployment and development
mcp = FastMCP("My App", dependencies=["pandas", "numpy"])

@dataclass
class AppContext:
    db: Database  # Replace with your actual DB type

@asynccontextmanager
async def app_lifespan(server: FastMCP) -> AsyncIterator[AppContext]:
    """Manage application lifecycle with type-safe context"""
    try:
        # Initialize on startup
        await db.connect()
        yield AppContext(db=db)
    finally:
        # Cleanup on shutdown
        await db.disconnect()

# Pass lifespan to server
mcp = FastMCP("My App", lifespan=app_lifespan)

# Access type-safe lifespan context in tools
@mcp.tool()
def query_db(ctx: Context) -> str:
    """Tool that uses initialized resources"""
    db = ctx.request_context.lifespan_context["db"]
    return db.query()

Resources

Resources are how you expose data to LLMs. They're similar to GET endpoints in a REST API - they provide data but shouldn't perform significant computation or have side effects:

@mcp.resource("config://app")
def get_config() -> str:
    """Static configuration data"""
    return "App configuration here"

@mcp.resource("users://{user_id}/profile")
def get_user_profile(user_id: str) -> str:
    """Dynamic user data"""
    return f"Profile data for user {user_id}"

Tools

Tools let LLMs take actions through your server. Unlike resources, tools are expected to perform computation and have side effects:

@mcp.tool()
def calculate_bmi(weight_kg: float, height_m: float) -> float:
    """Calculate BMI given weight in kg and height in meters"""
    return weight_kg / (height_m ** 2)

@mcp.tool()
async def fetch_weather(city: str) -> str:
    """Fetch current weather for a city"""
    async with httpx.AsyncClient() as client:
        response = await client.get(f"https://api.weather.com/{city}")
        return response.text

Prompts

Prompts are reusable templates that help LLMs interact with your server effectively:

@mcp.prompt()
def review_code(code: str) -> str:
    return f"Please review this code:\n\n{code}"

@mcp.prompt()
def debug_error(error: str) -> list[Message]:
    return [
        UserMessage("I'm seeing this error:"),
        UserMessage(error),
        AssistantMessage("I'll help debug that. What have you tried so far?")
    ]

Images

FastMCP provides an Image class that automatically handles image data:

from mcp.server.fastmcp import FastMCP, Image
from PIL import Image as PILImage

@mcp.tool()
def create_thumbnail(image_path: str) -> Image:
    """Create a thumbnail from an image"""
    img = PILImage.open(image_path)
    img.thumbnail((100, 100))
    return Image(data=img.tobytes(), format="png")

Context

The Context object gives your tools and resources access to MCP capabilities:

from mcp.server.fastmcp import FastMCP, Context

@mcp.tool()
async def long_task(files: list[str], ctx: Context) -> str:
    """Process multiple files with progress tracking"""
    for i, file in enumerate(files):
        ctx.info(f"Processing {file}")
        await ctx.report_progress(i, len(files))
        data, mime_type = await ctx.read_resource(f"file://{file}")
    return "Processing complete"

Running Your Server

Development Mode

The fastest way to test and debug your server is with the MCP Inspector:

mcp dev server.py

# Add dependencies
mcp dev server.py --with pandas --with numpy

# Mount local code
mcp dev server.py --with-editable .

Claude Desktop Integration

Once your server is ready, install it in Claude Desktop:

mcp install server.py

# Custom name
mcp install server.py --name "My Analytics Server"

# Environment variables
mcp install server.py -v API_KEY=abc123 -v DB_URL=postgres://...
mcp install server.py -f .env

Direct Execution

For advanced scenarios like custom deployments:

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("My App")

if __name__ == "__main__":
    mcp.run()

Run it with:

python server.py
# or
mcp run server.py

Examples

Echo Server

A simple server demonstrating resources, tools, and prompts:

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("Echo")

@mcp.resource("echo://{message}")
def echo_resource(message: str) -> str:
    """Echo a message as a resource"""
    return f"Resource echo: {message}"

@mcp.tool()
def echo_tool(message: str) -> str:
    """Echo a message as a tool"""
    return f"Tool echo: {message}"

@mcp.prompt()
def echo_prompt(message: str) -> str:
    """Create an echo prompt"""
    return f"Please process this message: {message}"

SQLite Explorer

A more complex example showing database integration:

from mcp.server.fastmcp import FastMCP
import sqlite3

mcp = FastMCP("SQLite Explorer")

@mcp.resource("schema://main")
def get_schema() -> str:
    """Provide the database schema as a resource"""
    conn = sqlite3.connect("database.db")
    schema = conn.execute(
        "SELECT sql FROM sqlite_master WHERE type='table'"
    ).fetchall()
    return "\n".join(sql[0] for sql in schema if sql[0])

@mcp.tool()
def query_data(sql: str) -> str:
    """Execute SQL queries safely"""
    conn = sqlite3.connect("database.db")
    try:
        result = conn.execute(sql).fetchall()
        return "\n".join(str(row) for row in result)
    except Exception as e:
        return f"Error: {str(e)}"

Advanced Usage

Low-Level Server

For more control, you can use the low-level server implementation directly. This gives you full access to the protocol and allows you to customize every aspect of your server, including lifecycle management through the lifespan API:

from contextlib import asynccontextmanager
from typing import AsyncIterator

@asynccontextmanager
async def server_lifespan(server: Server) -> AsyncIterator[dict]:
    """Manage server startup and shutdown lifecycle."""
    try:
        # Initialize resources on startup
        await db.connect()
        yield {"db": db}
    finally:
        # Clean up on shutdown
        await db.disconnect()

# Pass lifespan to server
server = Server("example-server", lifespan=server_lifespan)

# Access lifespan context in handlers
@server.call_tool()
async def query_db(name: str, arguments: dict) -> list:
    ctx = server.request_context
    db = ctx.lifespan_context["db"]
    return await db.query(arguments["query"])

The lifespan API provides:

  • A way to initialize resources when the server starts and clean them up when it stops
  • Access to initialized resources through the request context in handlers
  • Type-safe context passing between lifespan and request handlers
from mcp.server.lowlevel import Server, NotificationOptions
from mcp.server.models import InitializationOptions
import mcp.server.stdio
import mcp.types as types

# Create a server instance
server = Server("example-server")

@server.list_prompts()
async def handle_list_prompts() -> list[types.Prompt]:
    return [
        types.Prompt(
            name="example-prompt",
            description="An example prompt template",
            arguments=[
                types.PromptArgument(
                    name="arg1",
                    description="Example argument",
                    required=True
                )
            ]
        )
    ]

@server.get_prompt()
async def handle_get_prompt(
    name: str,
    arguments: dict[str, str] | None
) -> types.GetPromptResult:
    if name != "example-prompt":
        raise ValueError(f"Unknown prompt: {name}")

    return types.GetPromptResult(
        description="Example prompt",
        messages=[
            types.PromptMessage(
                role="user",
                content=types.TextContent(
                    type="text",
                    text="Example prompt text"
                )
            )
        ]
    )

async def run():
    async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
        await server.run(
            read_stream,
            write_stream,
            InitializationOptions(
                server_name="example",
                server_version="0.1.0",
                capabilities=server.get_capabilities(
                    notification_options=NotificationOptions(),
                    experimental_capabilities={},
                )
            )
        )

if __name__ == "__main__":
    import asyncio
    asyncio.run(run())

Writing MCP Clients

The SDK provides a high-level client interface for connecting to MCP servers:

from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

# Create server parameters for stdio connection
server_params = StdioServerParameters(
    command="python", # Executable
    args=["example_server.py"], # Optional command line arguments
    env=None # Optional environment variables
)

# Optional: create a sampling callback
async def handle_sampling_message(message: types.CreateMessageRequestParams) -> types.CreateMessageResult:
    return types.CreateMessageResult(
        role="assistant",
        content=types.TextContent(
            type="text",
            text="Hello, world! from model",
        ),
        model="gpt-3.5-turbo",
        stopReason="endTurn",
    )

async def run():
    async with stdio_client(server_params) as (read, write):
        async with ClientSession(read, write, sampling_callback=handle_sampling_message) as session:
            # Initialize the connection
            await session.initialize()

            # List available prompts
            prompts = await session.list_prompts()

            # Get a prompt
            prompt = await session.get_prompt("example-prompt", arguments={"arg1": "value"})

            # List available resources
            resources = await session.list_resources()

            # List available tools
            tools = await session.list_tools()

            # Read a resource
            content, mime_type = await session.read_resource("file://some/path")

            # Call a tool
            result = await session.call_tool("tool-name", arguments={"arg1": "value"})

if __name__ == "__main__":
    import asyncio
    asyncio.run(run())

MCP Primitives

The MCP protocol defines three core primitives that servers can implement:

Primitive Control Description Example Use
Prompts User-controlled Interactive templates invoked by user choice Slash commands, menu options
Resources Application-controlled Contextual data managed by the client application File contents, API responses
Tools Model-controlled Functions exposed to the LLM to take actions API calls, data updates

Server Capabilities

MCP servers declare capabilities during initialization:

Capability Feature Flag Description
prompts listChanged Prompt template management
resources subscribe<br/>listChanged Resource exposure and updates
tools listChanged Tool discovery and execution
logging - Server logging configuration
completion - Argument completion suggestions

Documentation

Contributing

We are passionate about supporting contributors of all levels of experience and would love to see you get involved in the project. See the contributing guide to get started.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
DuckDuckGo MCP Server

DuckDuckGo MCP Server

A Model Context Protocol (MCP) server that provides web search capabilities through DuckDuckGo, with additional features for content fetching and parsing.

Featured
Python
Supabase MCP Server

Supabase MCP Server

A Model Context Protocol (MCP) server that provides programmatic access to the Supabase Management API. This server allows AI models and other clients to manage Supabase projects and organizations through a standardized interface.

Featured
JavaScript
YouTube Transcript MCP Server

YouTube Transcript MCP Server

This server retrieves transcripts for given YouTube video URLs, enabling integration with Goose CLI or Goose Desktop for transcript extraction and processing.

Featured
Python
serper-search-scrape-mcp-server

serper-search-scrape-mcp-server

This Serper MCP Server supports search and webpage scraping, and all the most recent parameters introduced by the Serper API, like location.

Featured
TypeScript
The Verge News MCP Server

The Verge News MCP Server

Provides tools to fetch and search news from The Verge's RSS feed, allowing users to get today's news, retrieve random articles from the past week, and search for specific keywords in recent Verge content.

Featured
TypeScript
Google Search Console MCP Server

Google Search Console MCP Server

A server that provides access to Google Search Console data through the Model Context Protocol, allowing users to retrieve and analyze search analytics data with customizable dimensions and reporting periods.

Featured
TypeScript
Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.

Featured
TypeScript