Neo4j Knowledge Graph Memory Server

Neo4j Knowledge Graph Memory Server

Enhanced knowledge graph memory server for AI assistants that uses Neo4j as the backend storage engine, enabling powerful graph queries and efficient storage of user interaction information with full MCP protocol compatibility.

JovanHsu

AI Memory Systems
Database Interaction
AI Integration Systems
Visit Server

README

MCP Neo4j Knowledge Graph Memory Server

npm version License: MIT TypeScript Neo4j

简介

MCP Neo4j Knowledge Graph Memory Server是一个基于Neo4j图数据库的知识图谱记忆服务器,用于存储和检索AI助手与用户交互过程中的信息。该项目是官方Knowledge Graph Memory Server的增强版本,使用Neo4j作为后端存储引擎。

通过使用Neo4j作为存储后端,本项目提供了更强大的图查询能力、更好的性能和可扩展性,特别适合构建复杂的知识图谱应用。

功能特点

  • 🚀 基于Neo4j的高性能图数据库存储
  • 🔍 强大的模糊搜索和精确匹配能力
  • 🔄 实体、关系和观察的完整CRUD操作
  • 🌐 与MCP协议完全兼容
  • 📊 支持复杂的图查询和遍历
  • 🐳 Docker支持,便于部署

安装

前提条件

  • Node.js >= 22.0.0
  • Neo4j数据库(本地或远程)

通过npm安装

# 全局安装
npm install -g @jovanhsu/mcp-neo4j-memory-server

# 或作为项目依赖安装
npm install @jovanhsu/mcp-neo4j-memory-server

使用Docker

# 使用docker-compose启动Neo4j和Memory Server
git clone https://github.com/JovanHsu/mcp-neo4j-memory-server.git
cd mcp-neo4j-memory-server
docker-compose up -d

环境变量配置

服务器使用以下环境变量进行配置:

环境变量 描述 默认值
NEO4J_URI Neo4j数据库URI bolt://localhost:7687
NEO4J_USER Neo4j用户名 neo4j
NEO4J_PASSWORD Neo4j密码 password
NEO4J_DATABASE Neo4j数据库名称 neo4j

与Claude集成

在Claude Desktop中配置

claude_desktop_config.json中添加以下配置:

{
  "mcpServers": {
    "graph-memory": {
      "command": "npx",
      "args": [
        "-y",
        "@izumisy/mcp-neo4j-memory-server"
      ],
      "env": {
        "NEO4J_URI": "neo4j://localhost:7687",
        "NEO4J_USER": "neo4j",
        "NEO4J_PASSWORD": "password",
        "NEO4J_DATABASE": "memory"
      }
    }
  }
}

在Claude Web中使用MCP Inspector

  1. 安装MCP Inspector
  2. 启动Neo4j Memory Server:
    npx @jovanhsu/mcp-neo4j-memory-server
    
  3. 在另一个终端启动MCP Inspector:
    npx @modelcontextprotocol/inspector npx @jovanhsu/mcp-neo4j-memory-server
    
  4. 在浏览器中访问MCP Inspector界面

使用方法

Claude自定义指令

在Claude的自定义指令中添加以下内容:

Follow these steps for each interaction:

1. User Identification:
   - You should assume that you are interacting with default_user
   - If you have not identified default_user, proactively try to do so.

2. Memory Retrieval:
   - Always begin your chat by saying only "Remembering..." and search relevant information from your knowledge graph
   - Create a search query from user words, and search things from "memory". If nothing matches, try to break down words in the query at first ("A B" to "A" and "B" for example).
   - Always refer to your knowledge graph as your "memory"

3. Memory
   - While conversing with the user, be attentive to any new information that falls into these categories:
     a) Basic Identity (age, gender, location, job title, education level, etc.)
     b) Behaviors (interests, habits, etc.)
     c) Preferences (communication style, preferred language, etc.)
     d) Goals (goals, targets, aspirations, etc.)
     e) Relationships (personal and professional relationships up to 3 degrees of separation)

4. Memory Update:
   - If any new information was gathered during the interaction, update your memory as follows:
     a) Create entities for recurring organizations, people, and significant events
     b) Connect them to the current entities using relations
     b) Store facts about them as observations

API示例

如果您想在自己的应用程序中使用本服务器,可以通过MCP协议与其通信:

import { McpClient } from '@modelcontextprotocol/sdk/client/mcp.js';
import { StdioClientTransport } from '@modelcontextprotocol/sdk/client/stdio.js';

// 创建客户端
const transport = new StdioClientTransport({
  command: 'npx',
  args: ['-y', '@izumisy/mcp-neo4j-memory-server'],
  env: {
    NEO4J_URI: 'bolt://localhost:7687',
    NEO4J_USER: 'neo4j',
    NEO4J_PASSWORD: 'password',
    NEO4J_DATABASE: 'neo4j'
  }
});

const client = new McpClient();
await client.connect(transport);

// 创建实体
const result = await client.callTool('create_entities', {
  entities: [
    {
      name: '用户',
      entityType: '人物',
      observations: ['喜欢编程', '使用TypeScript']
    }
  ]
});

console.log(result);

为什么选择Neo4j?

相比于原始版本使用的JSON文件存储和DuckDB版本,Neo4j提供了以下优势:

  1. 原生图数据库:Neo4j是专为图数据设计的数据库,非常适合知识图谱的存储和查询
  2. 高性能查询:使用Cypher查询语言可以高效地进行复杂的图遍历和模式匹配
  3. 关系优先:Neo4j将关系作为一等公民,使得实体间的关系查询更加高效
  4. 可视化能力:Neo4j提供了内置的可视化工具,方便调试和理解知识图谱
  5. 扩展性:支持集群部署,可以处理大规模知识图谱

实现细节

数据模型

知识图谱在Neo4j中的存储模型如下:

(Entity:EntityType {name: "实体名称"})
(Entity)-[:HAS_OBSERVATION]->(Observation {content: "观察内容"})
(Entity1)-[:RELATION_TYPE]->(Entity2)

模糊搜索实现

本实现结合了Neo4j的全文搜索功能和Fuse.js进行灵活的实体搜索:

  • 使用Neo4j的全文索引进行初步搜索
  • Fuse.js提供额外的模糊匹配能力
  • 搜索结果包括精确和部分匹配,按相关性排序

开发

环境设置

# 克隆仓库
git clone https://github.com/JovanHsu/mcp-neo4j-memory-server.git
cd mcp-neo4j-memory-server

# 安装依赖
pnpm install

# 构建项目
pnpm build

# 开发模式(使用MCP Inspector)
pnpm dev

测试

# 运行测试
pnpm test

发布

# 准备发布
npm version [patch|minor|major]

# 发布到NPM
npm publish

贡献指南

欢迎贡献代码、报告问题或提出改进建议!请遵循以下步骤:

  1. Fork本仓库
  2. 创建您的特性分支 (git checkout -b feature/amazing-feature)
  3. 提交您的更改 (git commit -m 'Add some amazing feature')
  4. 推送到分支 (git push origin feature/amazing-feature)
  5. 创建一个Pull Request

相关项目

许可证

本项目采用MIT许可证 - 详见LICENSE文件。

联系方式

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
AIO-MCP Server

AIO-MCP Server

🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from

Featured
Local
Persistent Knowledge Graph

Persistent Knowledge Graph

An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.

Featured
Local
Hyperbrowser MCP Server

Hyperbrowser MCP Server

Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to

Featured
Local
React MCP

React MCP

react-mcp integrates with Claude Desktop, enabling the creation and modification of React apps based on user prompts

Featured
Local
Atlassian Integration

Atlassian Integration

Model Context Protocol (MCP) server for Atlassian Cloud products (Confluence and Jira). This integration is designed specifically for Atlassian Cloud instances and does not support Atlassian Server or Data Center deployments.

Featured
Any OpenAI Compatible API Integrations

Any OpenAI Compatible API Integrations

Integrate Claude with Any OpenAI SDK Compatible Chat Completion API - OpenAI, Perplexity, Groq, xAI, PyroPrompts and more.

Featured