NCBI Gene MCP Server
MCP server that interfaces with the NCBI Entrez API to fetch detailed information about genes and proteins, enabling gene searches, gene/protein metadata retrieval, and symbol searching with organism filtering.
Tools
search_genes
Search for genes in NCBI database using a query
fetch_gene_info
Fetch detailed information for a specific gene ID
fetch_protein_info
Fetch detailed information for a specific protein ID
search_by_gene_symbol
Search for genes by symbol with optional organism filter
README
NCBI Gene MCP Client
🧬 MCP client for fetching gene and protein metadata from NCBI Entrez API
This project provides a Model Context Protocol (MCP) client that interfaces with the NCBI Entrez API to fetch detailed information about genes and proteins. It's designed to be used both as a standalone command-line tool and as an MCP server for integration with MCP-compatible clients.
🚀 Features
- Gene Search: Search for genes using flexible queries
- Gene Information: Fetch detailed gene metadata by NCBI Gene ID
- Protein Information: Fetch protein details by NCBI Protein ID
- Symbol Search: Search genes by symbol with optional organism filtering
- Rate Limiting: Built-in respect for NCBI API rate limits
- MCP Server: JSON-RPC server for MCP protocol integration
- CLI Interface: Easy-to-use command-line interface
📦 Installation
From Source (Development)
# Clone the repository
git clone <repository-url>
cd ncbi_gene_mcp_client
# Install in development mode
pip install -e .
From PyPI (when available)
pip install ncbi_gene_mcp_client
🔧 Usage
Command Line Interface
After installation, you can use the CLI commands:
Demo (Quick Start)
ncbi-gene-client demo
Search for genes
ncbi-gene-client search-genes "BRCA1"
ncbi-gene-client search-genes "breast cancer" --max-results 10
Get gene information by ID
ncbi-gene-client gene-info 672 # BRCA1 gene
Search by gene symbol
ncbi-gene-client search-symbol BRCA1 --organism human
ncbi-gene-client search-symbol TP53
Get protein information
ncbi-gene-client protein-info <protein_id>
With NCBI credentials (recommended)
ncbi-gene-client --email your@email.com --api-key YOUR_API_KEY demo
Python API
from ncbi_gene_mcp_client.main import NCBIGeneMCPClientBridge
# Initialize the client
client = NCBIGeneMCPClientBridge(
email="your@email.com", # Recommended by NCBI
api_key="your_api_key" # Optional, for higher rate limits
)
# Search for genes
results = client.search_genes("BRCA1[gene] AND human[organism]")
print(f"Found {results.count} genes")
# Get detailed gene information
gene_info = client.fetch_gene_info("672") # BRCA1
print(f"Gene: {gene_info.name}")
print(f"Description: {gene_info.description}")
print(f"Organism: {gene_info.organism}")
# Search by gene symbol
genes = client.search_by_gene_symbol("BRCA1", organism="human")
for gene in genes:
print(f"{gene.name}: {gene.description}")
MCP Server
Run as an MCP server for integration with MCP-compatible clients:
ncbi-gene-mcp-server
The MCP server provides the following tools:
- search_genes: Search for genes using a query
- fetch_gene_info: Get detailed gene information by ID
- fetch_protein_info: Get protein information by ID
- search_by_gene_symbol: Search genes by symbol with optional organism filter
🧪 Examples
Example 1: Basic Gene Search
from ncbi_gene_mcp_client.main import NCBIGeneMCPClientBridge
client = NCBIGeneMCPClientBridge()
# Search for BRCA1 gene
results = client.search_genes("BRCA1")
print(f"Found {results.count} results")
# Get details for the first result
if results.ids:
gene_info = client.fetch_gene_info(results.ids[0])
print(f"Gene: {gene_info.name}")
print(f"Chromosome: {gene_info.chromosome}")
Example 2: Disease Gene Search
# Search for genes related to a disease
results = client.search_genes("diabetes[disease] AND human[organism]")
for gene_id in results.ids[:5]: # First 5 results
gene = client.fetch_gene_info(gene_id)
print(f"{gene.name}: {gene.description}")
Example 3: Cross-species Gene Comparison
# Compare BRCA1 across species
for organism in ["human", "mouse", "rat"]:
genes = client.search_by_gene_symbol("BRCA1", organism=organism)
if genes:
gene = genes[0]
print(f"{organism}: {gene.name} on chromosome {gene.chromosome}")
📊 Data Models
GeneInfo
{
"gene_id": "672",
"name": "BRCA1",
"description": "BRCA1 DNA repair associated",
"organism": "Homo sapiens",
"chromosome": "17",
"map_location": "17q21.31",
"gene_type": "protein-coding",
"other_aliases": ["BRCAI", "BRCC1", "BROVCA1"],
"summary": "This gene encodes a 190 kD nuclear phosphoprotein..."
}
SearchResult
{
"count": 1,
"ids": ["672"],
"query_translation": "BRCA1[gene]"
}
⚙️ Configuration
NCBI API Guidelines
It's recommended to provide your email address when using the NCBI API:
client = NCBIGeneMCPClientBridge(email="your@email.com")
For higher rate limits, you can also provide an API key:
client = NCBIGeneMCPClientBridge(
email="your@email.com",
api_key="your_ncbi_api_key"
)
Rate Limiting
The client automatically handles NCBI's rate limiting requirements:
- Without API key: 3 requests per second
- With API key: 10 requests per second
🧪 Testing
Run the test suite:
# Install test dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Run with coverage
pytest --cov=ncbi_gene_mcp_client
# Run integration tests (requires internet)
pytest -m integration
🔍 Development
Setting up for development
# Clone and install in development mode
git clone <repository-url>
cd ncbi_gene_mcp_client
pip install -e ".[dev]"
# Run linting
flake8 ncbi_gene_mcp_client/
mypy ncbi_gene_mcp_client/
# Format code
black ncbi_gene_mcp_client/
Project Structure
ncbi_gene_mcp_client/
├── ncbi_gene_mcp_client/
│ ├── __init__.py
│ ├── main.py # Main client class
│ ├── bridge.py # NCBI API bridge
│ ├── models.py # Data models
│ ├── mcp_server.py # MCP server implementation
│ └── cli.py # Command-line interface
├── tests/
│ ├── __init__.py
│ └── test_main.py # Test suite
├── pyproject.toml # Project configuration
├── README.md # This file
└── LICENSE # MIT License
📝 NCBI Resources
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
👨💻 Author
Mohammad Najeeb
📧 mona00002@uni-saarland.de
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Features
-
Feature 1: Description of feature 1
-
Feature 2: Description of feature 2
-
Feature 3: Description of feature 3
-
MCP Integration: Full Model Context Protocol server implementation
API Methods
Core Methods
method1(): Description of method1method2(): Description of method2method3(): Description of method3
Configuration
The package uses a configuration class for settings:
from ncbi_gene_mcp_client.main import NCBIGeneMCPClientConfig, NCBIGeneMCPClientBridge
config = NCBIGeneMCPClientConfig(
base_url="https://api.example.com",
api_key="your_api_key",
timeout=30.0
)
bridge = NCBIGeneMCPClientBridge(config)
MCP Server Configuration
To use the MCP server with an MCP client, configure it as follows:
{
"mcpServers": {
"ncbi_gene_mcp_client": {
"command": "ncbi_gene_mcp_client-server",
"env": {}
}
}
}
The server will automatically handle:
- JSON-RPC communication
- Tool discovery and invocation
- Error handling and reporting
Development
Setup Development Environment
# Install in development mode with dev dependencies
pip install -e .[dev]
# Run tests
pytest
# Format code
black ncbi_gene_mcp_client/
# Type checking
mypy ncbi_gene_mcp_client/
Project Structure
ncbi_gene_mcp_client/
├── pyproject.toml # Package configuration
├── README.md # This file
├── LICENSE # MIT License
├── ncbi_gene_mcp_client/ # Main package
│ ├── __init__.py # Package initialization
│ ├── main.py # Core functionality
│ └── mcp_server.py # MCP server implementation
└── tests/ # Test files
├── __init__.py
└── test_main.py # Tests for main functionality
License
MIT License - see LICENSE file for details.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Run the test suite
- Submit a pull request
Support
For issues and questions, please use the GitHub issue tracker.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.