Naver Search MCP Server

Naver Search MCP Server

Provides access to Naver Search APIs, allowing AI agents to search across multiple categories (blogs, news, books, images, shopping items, etc.) with structured responses optimized for LLM consumption.

Category
Visit Server

README

Naver Search MCP Server

smithery badge Version License

This MCP (Multi-platform Communication Protocol) server provides access to Naver Search APIs, allowing AI agents to search for various types of content on Naver.

Overview

  • Search for blogs, news, books, images, shopping items, and more
  • Multiple search categories with pagination support
  • Structured text responses optimized for LLM consumption
  • Check for adult content
  • Convert keyboard input errors (errata)

Table of Contents

Setup

Prerequisites

Installation

  1. Clone the repository:
git clone https://github.com/jikime/py-mcp-naver-search.git
cd py-mcp-naver-search
  1. uv installation
curl -LsSf https://astral.sh/uv/install.sh | sh
  1. Create a virtual environment and install dependencies:
uv venv -p 3.12
source .venv/bin/activate
pip install -r requirements.txt
  1. Create a .env file with your Naver API credentials:
cp env.example .env
vi .env

NAVER_CLIENT_ID=your_client_id_here
NAVER_CLIENT_SECRET=your_client_secret_here

Using Docker

  1. Build the Docker image:
docker build -t py-mcp-naver-search .
  1. Run the container:
docker run py-mcp-naver-search

Using Local

  1. Run the server:
mcp run server.py

Configure MCP Settings

Add the server configuration to your MCP settings file:

Claude desktop app

  1. To install automatically via Smithery:
npx -y @smithery/cli install @jikime/py-mcp-naver-search --client claude
  1. To install manually open ~/Library/Application Support/Claude/claude_desktop_config.json

Add this to the mcpServers object:

{
  "mcpServers": {
    "Google Toolbox": {
      "command": "/path/to/bin/uv",
      "args": [
        "--directory",
        "/path/to/py-mcp-naver-search",
        "run",
        "server.py"
      ]
    }
  }
}

Cursor IDE

open ~/.cursor/mcp.json

Add this to the mcpServers object:

{
  "mcpServers": {
    "Google Toolbox": {
      "command": "/path/to/bin/uv",
      "args": [
        "--directory",
        "/path/to/py-mcp-naver-search",
        "run",
        "server.py"
      ]
    }
  }
}

for Docker

{
  "mcpServers": {
    "Google Toolbox": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "py-mcp-naver-search"
      ]
    }
  }
}

Using the Client

The repository includes a client script for testing:

# Basic search
uv run client.py blog "Python programming" display=5 page=1

# News search with sorting
uv run client.py news "AI" display=10 page=1 sort=date

# Image search with filtering
uv run client.py image "cat" display=10 filter=large

# Check for adult content
uv run client.py adult "your query"

# Errata correction
uv run client.py errata "spdlqj"

Available Search Categories

The server supports the following search categories:

  1. blog - Blog posts
  2. news - News articles
  3. book - Books
  4. adult - Adult content check
  5. encyc - Encyclopedia entries
  6. cafe_article - Cafe articles
  7. kin - Knowledge iN Q&A
  8. local - Local business information
  9. errata - Keyboard input error correction
  10. shop - Shopping items
  11. doc - Academic papers and documents
  12. image - Images
  13. webkr - Web documents

API Reference

Tools

Search Blog

search_blog(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str

Searches for blogs on Naver using the given keyword.

Search News

search_news(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str

Searches for news on Naver using the given keyword.

Search Book

search_book(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str

Searches for book information on Naver using the given keyword.

Check Adult Query

check_adult_query(query: str) -> str

Determines if the input query is an adult search term.

Search Encyclopedia

search_encyclopedia(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str

Searches for encyclopedia information on Naver using the given keyword.

Search Cafe Article

search_cafe_article(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str

Searches for cafe articles on Naver using the given keyword.

Search KnowledgeiN

search_kin(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str

Searches for Knowledge iN Q&A on Naver using the given keyword.

Search Local

search_local(query: str, display: int = 5, page: int = 1, sort: str = "random") -> str

Searches for local business information using the given keyword.

Correct Errata

correct_errata(query: str) -> str

Converts Korean/English keyboard input errors.

Search Shop

search_shop(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str

Searches for shopping product information on Naver using the given keyword.

Search Document

search_doc(query: str, display: int = 10, page: int = 1) -> str

Searches for academic papers, reports, etc. using the given keyword.

Search Image

search_image(query: str, display: int = 10, page: int = 1, sort: str = "sim", filter: str = "all") -> str

Searches for images using the given keyword.

Search Web Document

search_webkr(query: str, display: int = 10, page: int = 1) -> str

Searches for web documents using the given keyword.

Resources

Available Search Categories

GET http://localhost:8000/available-search-categories

Returns a list of Naver search categories available on this MCP server.

Response Format

All tools return responses in structured text format, optimized for LLM processing:

Naver Blog search results (total 12,345 of 1~10):

### Result 1
Title(title): Sample Blog Post
Link(link): https://blog.example.com/post1
Description(description): This is a sample blog post about...
Blogger name(bloggername): John Doe
Blogger link(bloggerlink): https://blog.example.com
Post date(postdate): 20250429

### Result 2
...

Acknowledgements

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured