Naver Search MCP Server
Provides access to Naver Search APIs, allowing AI agents to search across multiple categories (blogs, news, books, images, shopping items, etc.) with structured responses optimized for LLM consumption.
README
Naver Search MCP Server
This MCP (Multi-platform Communication Protocol) server provides access to Naver Search APIs, allowing AI agents to search for various types of content on Naver.
Overview
- Search for blogs, news, books, images, shopping items, and more
- Multiple search categories with pagination support
- Structured text responses optimized for LLM consumption
- Check for adult content
- Convert keyboard input errors (errata)
Table of Contents
Setup
Prerequisites
- Python 3.12+
- Naver Developer API credentials
- You can obtain these credentials by signing up at the Naver Developers portal.
- And You can check my blog Naver Search API MCP Server, too.
Installation
- Clone the repository:
git clone https://github.com/jikime/py-mcp-naver-search.git
cd py-mcp-naver-search
- uv installation
curl -LsSf https://astral.sh/uv/install.sh | sh
- Create a virtual environment and install dependencies:
uv venv -p 3.12
source .venv/bin/activate
pip install -r requirements.txt
- Create a
.envfile with your Naver API credentials:
cp env.example .env
vi .env
NAVER_CLIENT_ID=your_client_id_here
NAVER_CLIENT_SECRET=your_client_secret_here
Using Docker
- Build the Docker image:
docker build -t py-mcp-naver-search .
- Run the container:
docker run py-mcp-naver-search
Using Local
- Run the server:
mcp run server.py
Configure MCP Settings
Add the server configuration to your MCP settings file:
Claude desktop app
- To install automatically via Smithery:
npx -y @smithery/cli install @jikime/py-mcp-naver-search --client claude
- To install manually
open
~/Library/Application Support/Claude/claude_desktop_config.json
Add this to the mcpServers object:
{
"mcpServers": {
"Google Toolbox": {
"command": "/path/to/bin/uv",
"args": [
"--directory",
"/path/to/py-mcp-naver-search",
"run",
"server.py"
]
}
}
}
Cursor IDE
open ~/.cursor/mcp.json
Add this to the mcpServers object:
{
"mcpServers": {
"Google Toolbox": {
"command": "/path/to/bin/uv",
"args": [
"--directory",
"/path/to/py-mcp-naver-search",
"run",
"server.py"
]
}
}
}
for Docker
{
"mcpServers": {
"Google Toolbox": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"py-mcp-naver-search"
]
}
}
}
Using the Client
The repository includes a client script for testing:
# Basic search
uv run client.py blog "Python programming" display=5 page=1
# News search with sorting
uv run client.py news "AI" display=10 page=1 sort=date
# Image search with filtering
uv run client.py image "cat" display=10 filter=large
# Check for adult content
uv run client.py adult "your query"
# Errata correction
uv run client.py errata "spdlqj"
Available Search Categories
The server supports the following search categories:
blog- Blog postsnews- News articlesbook- Booksadult- Adult content checkencyc- Encyclopedia entriescafe_article- Cafe articleskin- Knowledge iN Q&Alocal- Local business informationerrata- Keyboard input error correctionshop- Shopping itemsdoc- Academic papers and documentsimage- Imageswebkr- Web documents
API Reference
Tools
Search Blog
search_blog(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str
Searches for blogs on Naver using the given keyword.
Search News
search_news(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str
Searches for news on Naver using the given keyword.
Search Book
search_book(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str
Searches for book information on Naver using the given keyword.
Check Adult Query
check_adult_query(query: str) -> str
Determines if the input query is an adult search term.
Search Encyclopedia
search_encyclopedia(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str
Searches for encyclopedia information on Naver using the given keyword.
Search Cafe Article
search_cafe_article(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str
Searches for cafe articles on Naver using the given keyword.
Search KnowledgeiN
search_kin(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str
Searches for Knowledge iN Q&A on Naver using the given keyword.
Search Local
search_local(query: str, display: int = 5, page: int = 1, sort: str = "random") -> str
Searches for local business information using the given keyword.
Correct Errata
correct_errata(query: str) -> str
Converts Korean/English keyboard input errors.
Search Shop
search_shop(query: str, display: int = 10, page: int = 1, sort: str = "sim") -> str
Searches for shopping product information on Naver using the given keyword.
Search Document
search_doc(query: str, display: int = 10, page: int = 1) -> str
Searches for academic papers, reports, etc. using the given keyword.
Search Image
search_image(query: str, display: int = 10, page: int = 1, sort: str = "sim", filter: str = "all") -> str
Searches for images using the given keyword.
Search Web Document
search_webkr(query: str, display: int = 10, page: int = 1) -> str
Searches for web documents using the given keyword.
Resources
Available Search Categories
GET http://localhost:8000/available-search-categories
Returns a list of Naver search categories available on this MCP server.
Response Format
All tools return responses in structured text format, optimized for LLM processing:
Naver Blog search results (total 12,345 of 1~10):
### Result 1
Title(title): Sample Blog Post
Link(link): https://blog.example.com/post1
Description(description): This is a sample blog post about...
Blogger name(bloggername): John Doe
Blogger link(bloggerlink): https://blog.example.com
Post date(postdate): 20250429
### Result 2
...
Acknowledgements
License
This project is licensed under the MIT License - see the LICENSE file for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.