Nano Banana Pro MCP
Enables AI agents to generate, edit, and analyze images using Google's Gemini image generation models including Nano Banana Pro (gemini-3-pro-image-preview).
README
nano-banana-pro-mcp
<p align="center"> <img src="assets/logo.png" alt="Nano Banana Pro MCP Logo" width="200"> </p>
MCP server that enables AI agents like Claude to generate images using Google's Gemini image generation models (including Nano Banana Pro - gemini-3-pro-image-preview).
Note: I thought it was cool that Google Antigravity could generate images using nanobanana so I stole the idea.
Example
Here's Claude Code using the MCP to generate a hero image for a travel landing page:

And the beautiful result:

Installation
Claude Code CLI
claude mcp add nano-banana-pro -- npx @rafarafarafa/nano-banana-pro-mcp
Then add your API key to the MCP config. Open ~/.claude.json and find the nano-banana-pro server entry, then add your key:
{
"mcpServers": {
"nano-banana-pro": {
"type": "stdio",
"command": "npx",
"args": ["@rafarafarafa/nano-banana-pro-mcp"],
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
Note: Environment variables from your shell (like
export GEMINI_API_KEY=...) are NOT passed to MCP servers. You must add the key directly in the JSON config.
Claude Desktop
Add to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"nano-banana-pro": {
"command": "npx",
"args": ["@rafarafarafa/nano-banana-pro-mcp"],
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
Codex CLI
Create or edit .mcp.json in your project directory (or ~/.mcp.json for global config):
{
"mcpServers": {
"nano-banana-pro": {
"command": "npx",
"args": ["@rafarafarafa/nano-banana-pro-mcp"],
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
Gemini CLI
Create or edit ~/.gemini/settings.json:
{
"mcpServers": {
"nano-banana-pro": {
"command": "npx",
"args": ["@rafarafarafa/nano-banana-pro-mcp"],
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
Get an API Key
Get a free Gemini API key from Google AI Studio.
Available Tools
generate_image
Generate an image from a text prompt. Optionally provide reference images to guide the style or content.
Parameters:
prompt(required): Description of the image to generatemodel(optional): Gemini model to use (default:gemini-3-pro-image-preview)gemini-3-pro-image-preview- Nano Banana Pro (highest quality)gemini-2.5-flash-preview-05-20- Nano Banana (fast)gemini-2.0-flash-exp- Widely available fallback
aspectRatio(optional):"1:1"|"3:4"|"4:3"|"9:16"|"16:9"imageSize(optional):"1K"|"2K"|"4K"(only for image-specific models)images(optional): Array of reference images to guide generation- Each image:
{ data: "base64...", mimeType: "image/png" }
- Each image:
Example prompts:
Generate an image of a sunset over mountains
Generate a logo in the style of this reference image [with image attached]
edit_image
Edit one or more images based on instructions.
Parameters:
prompt(required): Instructions for how to edit the image(s)images(required): Array of images to edit- Each image:
{ data: "base64...", mimeType: "image/png" }
- Each image:
model(optional): Gemini model to use (default:gemini-3-pro-image-preview)
Example prompts:
Add sunglasses to this photo
Remove the background from this image
Combine these two images into one scene
describe_image
Analyze and describe one or more images. Returns text only (no image generation).
Parameters:
images(required): Array of images to analyze- Each image:
{ data: "base64...", mimeType: "image/png" }
- Each image:
prompt(optional): Custom analysis prompt (default: general description)model(optional): Gemini model to use (default:gemini-3-pro-image-preview)
Example prompts:
[default] Describe this image in detail
What objects are in this image?
How many people are in this photo?
What's the dominant color in this image?
Development
Setup
npm install
npm run build
Testing
npm test # Run unit tests
npm run test:watch # Run tests in watch mode
npm run typecheck # Type check without emitting
Manual Testing
# Generate a real image and save to test-output.png
GEMINI_API_KEY=your_key npm run test:manual "a cute cat wearing sunglasses"
Testing with MCP Inspector
npx @modelcontextprotocol/inspector node dist/index.js
Then set GEMINI_API_KEY in the inspector's environment and call the generate_image tool.
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.