Nano Banana Pro MCP

Nano Banana Pro MCP

Enables AI agents to generate, edit, and analyze images using Google's Gemini image generation models including Nano Banana Pro (gemini-3-pro-image-preview).

Category
Visit Server

README

nano-banana-pro-mcp

<p align="center"> <img src="assets/logo.png" alt="Nano Banana Pro MCP Logo" width="200"> </p>

MCP server that enables AI agents like Claude to generate images using Google's Gemini image generation models (including Nano Banana Pro - gemini-3-pro-image-preview).

Note: I thought it was cool that Google Antigravity could generate images using nanobanana so I stole the idea.

Example

Here's Claude Code using the MCP to generate a hero image for a travel landing page:

Claude Code using nano-banana-pro MCP

And the beautiful result:

Generated travel page with Santorini image


Installation

Claude Code CLI

claude mcp add nano-banana-pro -- npx @rafarafarafa/nano-banana-pro-mcp

Then add your API key to the MCP config. Open ~/.claude.json and find the nano-banana-pro server entry, then add your key:

{
  "mcpServers": {
    "nano-banana-pro": {
      "type": "stdio",
      "command": "npx",
      "args": ["@rafarafarafa/nano-banana-pro-mcp"],
      "env": {
        "GEMINI_API_KEY": "your_api_key_here"
      }
    }
  }
}

Note: Environment variables from your shell (like export GEMINI_API_KEY=...) are NOT passed to MCP servers. You must add the key directly in the JSON config.

Claude Desktop

Add to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "nano-banana-pro": {
      "command": "npx",
      "args": ["@rafarafarafa/nano-banana-pro-mcp"],
      "env": {
        "GEMINI_API_KEY": "your_api_key_here"
      }
    }
  }
}

Codex CLI

Create or edit .mcp.json in your project directory (or ~/.mcp.json for global config):

{
  "mcpServers": {
    "nano-banana-pro": {
      "command": "npx",
      "args": ["@rafarafarafa/nano-banana-pro-mcp"],
      "env": {
        "GEMINI_API_KEY": "your_api_key_here"
      }
    }
  }
}

Gemini CLI

Create or edit ~/.gemini/settings.json:

{
  "mcpServers": {
    "nano-banana-pro": {
      "command": "npx",
      "args": ["@rafarafarafa/nano-banana-pro-mcp"],
      "env": {
        "GEMINI_API_KEY": "your_api_key_here"
      }
    }
  }
}

Get an API Key

Get a free Gemini API key from Google AI Studio.


Available Tools

generate_image

Generate an image from a text prompt. Optionally provide reference images to guide the style or content.

Parameters:

  • prompt (required): Description of the image to generate
  • model (optional): Gemini model to use (default: gemini-3-pro-image-preview)
    • gemini-3-pro-image-preview - Nano Banana Pro (highest quality)
    • gemini-2.5-flash-preview-05-20 - Nano Banana (fast)
    • gemini-2.0-flash-exp - Widely available fallback
  • aspectRatio (optional): "1:1" | "3:4" | "4:3" | "9:16" | "16:9"
  • imageSize (optional): "1K" | "2K" | "4K" (only for image-specific models)
  • images (optional): Array of reference images to guide generation
    • Each image: { data: "base64...", mimeType: "image/png" }

Example prompts:

Generate an image of a sunset over mountains

Generate a logo in the style of this reference image [with image attached]

edit_image

Edit one or more images based on instructions.

Parameters:

  • prompt (required): Instructions for how to edit the image(s)
  • images (required): Array of images to edit
    • Each image: { data: "base64...", mimeType: "image/png" }
  • model (optional): Gemini model to use (default: gemini-3-pro-image-preview)

Example prompts:

Add sunglasses to this photo

Remove the background from this image

Combine these two images into one scene

describe_image

Analyze and describe one or more images. Returns text only (no image generation).

Parameters:

  • images (required): Array of images to analyze
    • Each image: { data: "base64...", mimeType: "image/png" }
  • prompt (optional): Custom analysis prompt (default: general description)
  • model (optional): Gemini model to use (default: gemini-3-pro-image-preview)

Example prompts:

[default] Describe this image in detail

What objects are in this image?

How many people are in this photo?

What's the dominant color in this image?

Development

Setup

npm install
npm run build

Testing

npm test              # Run unit tests
npm run test:watch    # Run tests in watch mode
npm run typecheck     # Type check without emitting

Manual Testing

# Generate a real image and save to test-output.png
GEMINI_API_KEY=your_key npm run test:manual "a cute cat wearing sunglasses"

Testing with MCP Inspector

npx @modelcontextprotocol/inspector node dist/index.js

Then set GEMINI_API_KEY in the inspector's environment and call the generate_image tool.


License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured