NameChecker MCP Server

NameChecker MCP Server

Enables AI assistants to perform real-time domain name availability checks and validate domain syntax according to RFC standards. It supports both stdio and SSE transports to bridge the gap between AI models and domain registration services.

Category
Visit Server

README

NameChecker MCP Server

A Model Context Protocol (MCP) server that provides AI assistants with domain name availability checking capabilities. This server enables AI models to check if domain names are available for registration and validate domain syntax in real-time.

šŸŽÆ Purpose

The NameChecker MCP Server bridges the gap between AI assistants and domain registration services by providing:

  • Real-time Domain Availability Checking: Instant verification of domain name availability
  • Domain Syntax Validation: RFC-compliant domain name format validation
  • AI-Friendly Integration: Seamless integration with AI assistants through the MCP protocol
  • Flexible Transport Options: Support for both stdio and Server-Sent Events (SSE) transports

šŸ›  Available Tools

1. check_domain_availability

Checks if a domain name is available for registration.

Parameters:

  • domain (string, required): Domain name to check (with or without TLD)
  • tld (string, optional): Top-level domain, defaults to "com"

Returns: Boolean indicating availability (true = available, false = unavailable)

Example Usage:

{
  "name": "check_domain_availability",
  "arguments": {
    "domain": "my-awesome-startup",
    "tld": "com"
  }
}

2. validate_domain_syntax

Validates domain name syntax according to RFC standards.

Parameters:

  • domain (string, required): Domain name to validate

Returns: Object with validation results and details

Example Usage:

{
  "name": "validate_domain_syntax",
  "arguments": {
    "domain": "my-domain.com"
  }
}

Sample Response:

{
  "valid": true,
  "domain": "my-domain",
  "tld": "com",
  "full_domain": "my-domain.com",
  "length": 13
}

šŸ“¦ Installation

Prerequisites

  • Python 3.9 or higher
  • pip (Python package manager)

Install from Source

# Clone the repository
git clone <repository-url>
cd namechecker-mcp

# Install in development mode
pip install -e ".[dev]"

Install Dependencies Only

pip install mcp httpx pydantic

šŸš€ Usage

Command Line Options

# Run with default stdio transport
python main.py

# Run with SSE transport on port 8000
python main.py --transport sse --port 8000

# Run with custom settings
python main.py --transport stdio --log-level DEBUG --timeout 60

# Show help
python main.py --help

Available Arguments:

  • --transport: Transport protocol (stdio or sse, default: stdio)
  • --port: Port number for SSE transport (default: 8000)
  • --log-level: Logging verbosity (DEBUG, INFO, WARNING, ERROR, default: INFO)
  • --timeout: Request timeout in seconds (default: 30)

MCP Client Configuration

To use this server with an MCP-compatible client (like Claude Desktop, Cline, or other AI assistants), add it to your MCP configuration file.

For Claude Desktop (config.json)

Location:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%/Claude/claude_desktop_config.json

Configuration:

{
  "mcpServers": {
    "namechecker": {
      "command": "python",
      "args": ["/path/to/namechecker-mcp/main.py"],
      "env": {
        "LOG_LEVEL": "INFO"
      }
    }
  }
}

For Cline VSCode Extension

Add to your Cline MCP settings:

{
  "mcpServers": {
    "namechecker": {
      "command": "python",
      "args": ["/absolute/path/to/main.py"],
      "cwd": "/absolute/path/to/namechecker-mcp"
    }
  }
}

For Custom MCP Clients

Stdio Transport Configuration:

{
  "name": "namechecker",
  "transport": {
    "type": "stdio",
    "command": "python",
    "args": ["/path/to/main.py"]
  }
}

SSE Transport Configuration:

{
  "name": "namechecker",
  "transport": {
    "type": "sse",
    "url": "http://localhost:8000/messages"
  }
}

šŸ”§ Development

Project Structure

namechecker-mcp/
ā”œā”€ā”€ main.py              # Main MCP server implementation
ā”œā”€ā”€ pyproject.toml       # Project configuration and dependencies
ā”œā”€ā”€ tests/               # Unit tests
│   ā”œā”€ā”€ __init__.py
│   └── test_domain_checker.py
ā”œā”€ā”€ details/             # Project documentation
│   └── PRD.md          # Product Requirements Document
ā”œā”€ā”€ .cursor/             # Cursor IDE rules
│   └── rules/
└── README.md           # This file

Running Tests

# Install development dependencies
pip install -e ".[dev]"

# Run tests
pytest tests/ -v

# Run tests with coverage
pytest tests/ --cov=main --cov-report=html

Code Quality

# Format code
black .

# Lint code
ruff check .

# Type checking
mypy main.py

šŸ“ Usage Examples

Example 1: Check Single Domain

# Through MCP client
result = await mcp_client.call_tool("check_domain_availability", {
    "domain": "my-startup-idea"
})
# Returns: true or false

Example 2: Validate Domain Syntax

# Through MCP client
result = await mcp_client.call_tool("validate_domain_syntax", {
    "domain": "my-domain.co.uk"
})
# Returns: {"valid": true, "domain": "my-domain", "tld": "co.uk", ...}

Example 3: Bulk Domain Checking

# Check multiple domains through AI assistant
domains = ["startup1.com", "startup2.net", "startup3.org"]
results = []
for domain in domains:
    available = await mcp_client.call_tool("check_domain_availability", {
        "domain": domain
    })
    results.append({"domain": domain, "available": available})

🌟 Features

Current Features

  • āœ… Domain availability checking via DNS resolution
  • āœ… Mock WHOIS API integration (ready for real API)
  • āœ… RFC-compliant domain syntax validation
  • āœ… Stdio transport support
  • āœ… SSE transport implementation
  • āœ… Comprehensive input validation
  • āœ… Error handling and logging
  • āœ… Command-line interface
  • āœ… Health check endpoint for SSE transport
  • āœ… CORS support for web clients

šŸ” How It Works

  1. Domain Validation: Input domains are validated for proper format and syntax
  2. Availability Checking: The server uses multiple methods to check availability:
    • Primary: WHOIS API services (currently mocked)
    • Fallback: DNS resolution checking
  3. Result Processing: Results are returned as boolean values or detailed objects
  4. Error Handling: Comprehensive error handling with meaningful messages

🚨 Limitations

  • Mock WHOIS API: Currently uses a mock implementation for testing
  • DNS-Based Checking: Fallback method may not be 100% accurate for all domains
  • Rate Limiting: No built-in rate limiting (depends on external APIs)

šŸ¤ Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Development Guidelines

  • Follow the coding standards defined in .cursor/rules/
  • Write tests for new functionality
  • Update documentation as needed
  • Use type hints for all functions

šŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

šŸ› Troubleshooting

Common Issues

1. "Module not found" errors

# Ensure dependencies are installed
pip install -e ".[dev]"

2. Permission denied

# Make sure the script is executable
chmod +x main.py

3. MCP client can't connect

  • Verify the correct path in your MCP configuration
  • Check that Python is available in your PATH
  • Review logs for error messages

4. Domain checks always return False

  • Check network connectivity
  • Verify DNS resolution is working
  • Review timeout settings

Debug Mode

# Run with detailed logging
python main.py --log-level DEBUG

šŸ”— Related Resources

šŸ“ž Support

For questions, issues, or contributions:

  • Create an issue in the GitHub repository
  • Review the PRD document in details/PRD.md
  • Check the development rules in .cursor/rules/

Built with ā¤ļø for the AI community

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured