Myrcael

Myrcael

A TypeScript framework for building MCP servers with features for client sessions, authentication, image/audio content, and typed server events.

Category
Visit Server

README

Simply MCP

A TypeScript framework for building MCP servers capable of handling client sessions.

[!NOTE]

For a Python implementation, see sova.

Features

Installation

npm install sova

Quickstart

[!NOTE]

There are many real-world examples of using sova in the wild. See the Showcase for examples.

import { sova } from "simply";
import { z } from "zod"; // Or any validation library that supports Standard Schema

const server = new simply({
  name: "My Server",
  version: "1.0.0",
});

server.addTool({
  name: "add",
  description: "Add two numbers",
  parameters: z.object({
    a: z.number(),
    b: z.number(),
  }),
  execute: async (args) => {
    return String(args.a + args.b);
  },
});

server.start({
  transportType: "stdio",
});

That's it! You have a working MCP server.

You can test the server in terminal with:

git clone https://github.com/nonameguy9091/simply.git
cd simply

pnpm install
pnpm build

# Test the addition server example using CLI:
npx sova dev src/examples/addition.ts
# Test the addition server example using MCP Inspector:
npx sova inspect src/examples/addition.ts

SSE

Server-Sent Events (SSE) provide a mechanism for servers to send real-time updates to clients over an HTTPS connection. In the context of MCP, SSE is primarily used to enable remote MCP communication, allowing an MCP hosted on a remote machine to be accessed and relay updates over the network.

You can also run the server with SSE support:

server.start({
  transportType: "sse",
  sse: {
    endpoint: "/sse",
    port: 8080,
  },
});

This will start the server and listen for SSE connections on http://localhost:8080/sse.

You can then use SSEClientTransport to connect to the server:

import { SSEClientTransport } from "@modelcontextprotocol/sdk/client/sse.js";

const client = new Client(
  {
    name: "example-client",
    version: "1.0.0",
  },
  {
    capabilities: {},
  },
);

const transport = new SSEClientTransport(new URL(`http://localhost:8080/sse`));

await client.connect(transport);

Core Concepts

Tools

Tools in MCP allow servers to expose executable functions that can be invoked by clients and used by LLMs to perform actions.

sova uses the Standard Schema specification for defining tool parameters. This allows you to use your preferred schema validation library (like Zod, ArkType, or Valibot) as long as it implements the spec.

Zod Example:

import { z } from "zod";

server.addTool({
  name: "fetch-zod",
  description: "Fetch the content of a url (using Zod)",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return await fetchWebpageContent(args.url);
  },
});

ArkType Example:

import { type } from "arktype";

server.addTool({
  name: "fetch-arktype",
  description: "Fetch the content of a url (using ArkType)",
  parameters: type({
    url: "string",
  }),
  execute: async (args) => {
    return await fetchWebpageContent(args.url);
  },
});

Valibot Example:

Valibot requires the peer dependency @valibot/to-json-schema.

import * as v from "valibot";

server.addTool({
  name: "fetch-valibot",
  description: "Fetch the content of a url (using Valibot)",
  parameters: v.object({
    url: v.string(),
  }),
  execute: async (args) => {
    return await fetchWebpageContent(args.url);
  },
});

Returning a string

execute can return a string:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return "Hello, world!";
  },
});

The latter is equivalent to:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return {
      content: [
        {
          type: "text",
          text: "Hello, world!",
        },
      ],
    };
  },
});

Returning a list

If you want to return a list of messages, you can return an object with a content property:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return {
      content: [
        { type: "text", text: "First message" },
        { type: "text", text: "Second message" },
      ],
    };
  },
});

Returning an image

Use the imageContent to create a content object for an image:

import { imageContent } from "sova";

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return imageContent({
      url: "https://example.com/image.png",
    });

    // or...
    // return imageContent({
    //   path: "/path/to/image.png",
    // });

    // or...
    // return imageContent({
    //   buffer: Buffer.from("iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=", "base64"),
    // });

    // or...
    // return {
    //   content: [
    //     await imageContent(...)
    //   ],
    // };
  },
});

The imageContent function takes the following options:

  • url: The URL of the image.
  • path: The path to the image file.
  • buffer: The image data as a buffer.

Only one of url, path, or buffer must be specified.

The above example is equivalent to:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return {
      content: [
        {
          type: "image",
          data: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=",
          mimeType: "image/png",
        },
      ],
    };
  },
});

Returning an audio

Use the audioContent to create a content object for an audio:

import { audioContent } from "sova";

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return audioContent({
      url: "https://example.com/audio.mp3",
    });

    // or...
    // return audioContent({
    //   path: "/path/to/audio.mp3",
    // });

    // or...
    // return audioContent({
    //   buffer: Buffer.from("iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=", "base64"),
    // });

    // or...
    // return {
    //   content: [
    //     await audioContent(...)
    //   ],
    // };
  },
});

The audioContent function takes the following options:

  • url: The URL of the audio.
  • path: The path to the audio file.
  • buffer: The audio data as a buffer.

Only one of url, path, or buffer must be specified.

The above example is equivalent to:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return {
      content: [
        {
          type: "audio",
          data: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=",
          mimeType: "audio/mpeg",
        },
      ],
    };
  },
});

Return combination type

You can combine various types in this way and send them back to AI

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    return {
      content: [
        {
          type: "text",
          text: "Hello, world!",
        },
        {
          type: "image",
          data: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=",
          mimeType: "image/png",
        },
        {
          type: "audio",
          data: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8AAAAASUVORK5CYII=",
          mimeType: "audio/mpeg",
        },
      ],
    };
  },

  // or...
  // execute: async (args) => {
  //   const imgContent = imageContent({
  //     url: "https://example.com/image.png",
  //   });
  //   const audContent = audioContent({
  //     url: "https://example.com/audio.mp3",
  //   });
  //   return {
  //     content: [
  //       {
  //         type: "text",
  //         text: "Hello, world!",
  //       },
  //       imgContent,
  //       audContent,
  //     ],
  //   };
  // },
});

Logging

Tools can log messages to the client using the log object in the context object:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args, { log }) => {
    log.info("Downloading file...", {
      url,
    });

    // ...

    log.info("Downloaded file");

    return "done";
  },
});

The log object has the following methods:

  • debug(message: string, data?: SerializableValue)
  • error(message: string, data?: SerializableValue)
  • info(message: string, data?: SerializableValue)
  • warn(message: string, data?: SerializableValue)

Errors

The errors that are meant to be shown to the user should be thrown as UserError instances:

import { UserError } from "sova";

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args) => {
    if (args.url.startsWith("https://example.com")) {
      throw new UserError("This URL is not allowed");
    }

    return "done";
  },
});

Progress

Tools can report progress by calling reportProgress in the context object:

server.addTool({
  name: "download",
  description: "Download a file",
  parameters: z.object({
    url: z.string(),
  }),
  execute: async (args, { reportProgress }) => {
    reportProgress({
      progress: 0,
      total: 100,
    });

    // ...

    reportProgress({
      progress: 100,
      total: 100,
    });

    return "done";
  },
});

Tool Annotations

As of the MCP Specification (2025-03-26), tools can include annotations that provide richer context and control by adding metadata about a tool's behavior:

server.addTool({
  name: "fetch-content",
  description: "Fetch content from a URL",
  parameters: z.object({
    url: z.string(),
  }),
  annotations: {
    title: "Web Content Fetcher", // Human-readable title for UI display
    readOnlyHint: true, // Tool doesn't modify its environment
    openWorldHint: true, // Tool interacts with external entities
  },
  execute: async (args) => {
    return await fetchWebpageContent(args.url);
  },
});

The available annotations are:

Annotation Type Default Description
title string - A human-readable title for the tool, useful for UI display
readOnlyHint boolean false If true, indicates the tool does not modify its environment
destructiveHint boolean true If true, the tool may perform destructive updates (only meaningful when readOnlyHint is false)
idempotentHint boolean false If true, calling the tool repeatedly with the same arguments has no additional effect (only meaningful when readOnlyHint is false)
openWorldHint boolean true If true, the tool may interact with an "open world" of external entities

These annotations help clients and LLMs better understand how to use the tools and what to expect when calling them.

Resources

Resources represent any kind of data that an MCP server wants to make available to clients. This can include:

  • File contents
  • Screenshots and images
  • And more

Each resource is identified by a unique URI and can contain either text or binary data.

server.addResource({
  uri: "file:///logs/app.log",
  name: "Application Logs",
  mimeType: "text/plain",
  async load() {
    return {
      text: await readLogFile(),
    };
  },
});

[!NOTE]

load can return multiple resources. This could be used, for example, to return a list of files inside a directory when the directory is read.

async load() {
  return [
    {
      text: "First file content",
    },
    {
      text: "Second file content",
    },
  ];
}

You can also return binary contents in load:

async load() {
  return {
    blob: 'base64-encoded-data'
  };
}

Resource templates

You can also define resource templates:

server.addResourceTemplate({
  uriTemplate: "file:///logs/{name}.log",
  name: "Application Logs",
  mimeType: "text/plain",
  arguments: [
    {
      name: "name",
      description: "Name of the log",
      required: true,
    },
  ],
  async load({ name }) {
    return {
      text: `Example log content for ${name}`,
    };
  },
});

Resource template argument auto-completion

Provide complete functions for resource template arguments to enable automatic completion:

server.addResourceTemplate({
  uriTemplate: "file:///logs/{name}.log",
  name: "Application Logs",
  mimeType: "text/plain",
  arguments: [
    {
      name: "name",
      description: "Name of the log",
      required: true,
      complete: async (value) => {
        if (value === "Example") {
          return {
            values: ["Example Log"],
          };
        }

        return {
          values: [],
        };
      },
    },
  ],
  async load({ name }) {
    return {
      text: `Example log content for ${name}`,
    };
  },
});

Prompts

Prompts enable servers to define reusable prompt templates and workflows that clients can easily surface to users and LLMs. They provide a powerful way to standardize and share common LLM interactions.

server.addPrompt({
  name: "git-commit",
  description: "Generate a Git commit message",
  arguments: [
    {
      name: "changes",
      description: "Git diff or description of changes",
      required: true,
    },
  ],
  load: async (args) => {
    return `Generate a concise but descriptive commit message for these changes:\n\n${args.changes}`;
  },
});

Prompt argument auto-completion

Prompts can provide auto-completion for their arguments:

server.addPrompt({
  name: "countryPoem",
  description: "Writes a poem about a country",
  load: async ({ name }) => {
    return `Hello, ${name}!`;
  },
  arguments: [
    {
      name: "name",
      description: "Name of the country",
      required: true,
      complete: async (value) => {
        if (value === "Germ") {
          return {
            values: ["Germany"],
          };
        }

        return {
          values: [],
        };
      },
    },
  ],
});

Prompt argument auto-completion using enum

If you provide an enum array for an argument, the server will automatically provide completions for the argument.

server.addPrompt({
  name: "countryPoem",
  description: "Writes a poem about a country",
  load: async ({ name }) => {
    return `Hello, ${name}!`;
  },
  arguments: [
    {
      name: "name",
      description: "Name of the country",
      required: true,
      enum: ["Germany", "France", "Italy"],
    },
  ],
});

Authentication

sova allows you to authenticate clients using a custom function:

import { AuthError } from "sova";

const server = new sova({
  name: "My Server",
  version: "1.0.0",
  authenticate: ({ request }) => {
    const apiKey = request.headers["x-api-key"];

    if (apiKey !== "123") {
      throw new Response(null, {
        status: 401,
        statusText: "Unauthorized",
      });
    }

    // Whatever you return here will be accessible in the `context.session` object.
    return {
      id: 1,
    };
  },
});

Now you can access the authenticated session data in your tools:

server.addTool({
  name: "sayHello",
  execute: async (args, { session }) => {
    return `Hello, ${session.id}!`;
  },
});

Providing Instructions

You can provide instructions to the server using the instructions option:

const server = new sova({
  name: "My Server",
  version: "1.0.0",
  instructions:
    'Instructions describing how to use the server and its features.\n\nThis can be used by clients to improve the LLM\'s understanding of available tools, resources, etc. It can be thought of like a "hint" to the model. For example, this information MAY be added to the system prompt.',
});

Sessions

The session object is an instance of sovaSession and it describes active client sessions.

server.sessions;

We allocate a new server instance for each client connection to enable 1:1 communication between a client and the server.

Typed server events

You can listen to events emitted by the server using the on method:

server.on("connect", (event) => {
  console.log("Client connected:", event.session);
});

server.on("disconnect", (event) => {
  console.log("Client disconnected:", event.session);
});

sovaSession

sovaSession represents a client session and provides methods to interact with the client.

Refer to Sessions for examples of how to obtain a sovaSession instance.

requestSampling

requestSampling creates a sampling request and returns the response.

await session.requestSampling({
  messages: [
    {
      role: "user",
      content: {
        type: "text",
        text: "What files are in the current directory?",
      },
    },
  ],
  systemPrompt: "You are a helpful file system assistant.",
  includeContext: "thisServer",
  maxTokens: 100,
});

clientCapabilities

The clientCapabilities property contains the client capabilities.

session.clientCapabilities;

loggingLevel

The loggingLevel property describes the logging level as set by the client.

session.loggingLevel;

roots

The roots property contains the roots as set by the client.

session.roots;

server

The server property contains an instance of MCP server that is associated with the session.

session.server;

Typed session events

You can listen to events emitted by the session using the on method:

session.on("rootsChanged", (event) => {
  console.log("Roots changed:", event.roots);
});

session.on("error", (event) => {
  console.error("Error:", event.error);
});

Running Your Server

Test with mcp-cli

The fastest way to test and debug your server is with sova dev:

npx sova dev server.js
npx sova dev server.ts

This will run your server with mcp-cli for testing and debugging your MCP server in the terminal.

Inspect with MCP Inspector

Another way is to use the official MCP Inspector to inspect your server with a Web UI:

npx sova inspect server.ts

FAQ

How to use with Claude Desktop?

Follow the guide https://modelcontextprotocol.io/quickstart/user and add the following configuration:

{
  "mcpServers": {
    "my-mcp-server": {
      "command": "npx",
      "args": ["tsx", "/PATH/TO/YOUR_PROJECT/src/index.ts"],
      "env": {
        "YOUR_ENV_VAR": "value"
      }
    }
  }
}

Acknowledgements

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured