ms-fabric-mcp-server

ms-fabric-mcp-server

Enables AI agents to interact with Microsoft Fabric by exposing tools for managing workspaces, notebooks, SQL queries, pipelines, and Livy Spark sessions. It provides a comprehensive set of operations for data engineering and analytics tasks using standard Azure authentication.

Category
Visit Server

README

ms-fabric-mcp-server

PyPI version Python License: MIT Tests

A Model Context Protocol (MCP) server for Microsoft Fabric. Exposes Fabric operations (workspaces, notebooks, SQL, Livy, pipelines, jobs) as MCP tools that AI agents can invoke.

⚠️ Warning: This package is intended for development environments only and should not be used in production. It includes tools that can perform destructive operations (e.g., delete_notebook, delete_item) and execute arbitrary code via Livy Spark sessions. Always review AI-generated tool calls before execution.

Quick Start

The fastest way to use this MCP server is with uvx:

uvx ms-fabric-mcp-server

Installation

# Using uv (recommended)
uv pip install ms-fabric-mcp-server

# Using pip
pip install ms-fabric-mcp-server

# With SQL support (requires pyodbc)
pip install ms-fabric-mcp-server[sql]

# With OpenTelemetry tracing
pip install ms-fabric-mcp-server[sql,telemetry]

Authentication

Uses DefaultAzureCredential from azure-identity - no explicit credential configuration needed. This automatically tries multiple authentication methods:

  1. Environment credentials (AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET)
  2. Managed Identity (when running on Azure)
  3. Azure CLI credentials (az login)
  4. VS Code credentials
  5. Azure PowerShell credentials

No Fabric-specific auth environment variables are needed - it just works if you're authenticated via any of the above methods.

Usage

VS Code Integration

Add to your VS Code MCP settings (.vscode/mcp.json or User settings):

{
  "servers": {
    "MS Fabric MCP Server": {
      "type": "stdio",
      "command": "uvx",
      "args": ["ms-fabric-mcp-server"]
    }
  }
}

Claude Desktop Integration

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "fabric": {
      "command": "uvx",
      "args": ["ms-fabric-mcp-server"]
    }
  }
}

Codex Integration

Add to your Codex config.toml:

[mcp_servers.ms_fabric_mcp]
command = "uvx"
args = ["ms-fabric-mcp-server"]

Running Standalone

# Using uvx (no installation needed)
uvx ms-fabric-mcp-server

# Direct execution (if installed)
ms-fabric-mcp-server

# Via Python module
python -m ms_fabric_mcp_server

# With MCP Inspector (development)
npx @modelcontextprotocol/inspector uvx ms-fabric-mcp-server

Logging & Debugging (optional)

MCP stdio servers must keep protocol traffic on stdout, so redirect stderr to capture logs. Giving the agent read access to the log file is a powerful way to debug failures. You can also set AZURE_LOG_LEVEL (Azure SDK) and MCP_LOG_LEVEL (server) to control verbosity.

VS Code (Bash):

{
  "servers": {
    "MS Fabric MCP Server": {
      "type": "stdio",
      "command": "bash",
      "args": [
        "-lc",
        "LOG_DIR=\"$HOME/mcp_logs\"; LOG_FILE=\"$LOG_DIR/ms-fabric-mcp-$(date +%Y%m%d_%H%M%S).log\"; uvx ms-fabric-mcp-server 2> \"$LOG_FILE\""
      ],
      "env": {
        "AZURE_LOG_LEVEL": "info",
        "MCP_LOG_LEVEL": "INFO"
      }
    }
  }
}

VS Code (PowerShell):

{
  "servers": {
    "MS Fabric MCP Server": {
      "type": "stdio",
      "command": "powershell",
      "args": [
        "-NoProfile",
        "-Command",
        "$logDir=\"$env:USERPROFILE\\mcp_logs\"; New-Item -ItemType Directory -Force -Path $logDir | Out-Null; $ts=Get-Date -Format yyyyMMdd_HHmmss; $logFile=\"$logDir\\ms-fabric-mcp-$ts.log\"; uvx ms-fabric-mcp-server 2> $logFile"
      ],
      "env": {
        "AZURE_LOG_LEVEL": "info",
        "MCP_LOG_LEVEL": "INFO"
      }
    }
  }
}

Programmatic Usage (Library Mode)

from fastmcp import FastMCP
from ms_fabric_mcp_server import register_fabric_tools

# Create your own server
mcp = FastMCP("my-custom-server")

# Register all Fabric tools
register_fabric_tools(mcp)

# Add your own customizations...

mcp.run()

Configuration

Environment variables (all optional with sensible defaults):

Variable Default Description
FABRIC_BASE_URL https://api.fabric.microsoft.com/v1 Fabric API base URL
FABRIC_SCOPES https://api.fabric.microsoft.com/.default OAuth scopes
FABRIC_API_CALL_TIMEOUT 30 API timeout (seconds)
FABRIC_MAX_RETRIES 3 Max retry attempts
FABRIC_RETRY_BACKOFF 2.0 Backoff factor
LIVY_API_CALL_TIMEOUT 120 Livy timeout (seconds)
LIVY_POLL_INTERVAL 2.0 Livy polling interval
LIVY_STATEMENT_WAIT_TIMEOUT 10 Livy statement wait timeout
LIVY_SESSION_WAIT_TIMEOUT 240 Livy session wait timeout
MCP_SERVER_NAME ms-fabric-mcp-server Server name for MCP
MCP_LOG_LEVEL INFO Logging level
AZURE_LOG_LEVEL info Azure SDK logging level

Copy .env.example to .env and customize as needed.

Available Tools

The server provides 35 core tools, with 3 additional SQL tools when installed with [sql] extras (38 total).

Tool Group Count Tools
Workspace 1 list_workspaces
Item 2 list_items, delete_item
Notebook 6 import_notebook_to_fabric, get_notebook_content, attach_lakehouse_to_notebook, get_notebook_execution_details, list_notebook_executions, get_notebook_driver_logs
Job 4 run_on_demand_job, get_job_status, get_job_status_by_url, get_operation_result
Livy 8 livy_create_session, livy_list_sessions, livy_get_session_status, livy_close_session, livy_run_statement, livy_get_statement_status, livy_cancel_statement, livy_get_session_log
Pipeline 5 create_blank_pipeline, add_copy_activity_to_pipeline, add_notebook_activity_to_pipeline, add_dataflow_activity_to_pipeline, add_activity_to_pipeline
Semantic Model 7 create_semantic_model, add_table_to_semantic_model, add_relationship_to_semantic_model, get_semantic_model_details, get_semantic_model_definition, add_measures_to_semantic_model, delete_measures_from_semantic_model
Power BI 2 refresh_semantic_model, execute_dax_query
SQL (optional) 3 get_sql_endpoint, execute_sql_query, execute_sql_statement

SQL Tools (Optional)

SQL tools require pyodbc and the Microsoft ODBC Driver for SQL Server:

# Install with SQL support
pip install ms-fabric-mcp-server[sql]

# On Ubuntu/Debian, install the ODBC driver first:
curl https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -
curl https://packages.microsoft.com/config/ubuntu/$(lsb_release -rs)/prod.list | sudo tee /etc/apt/sources.list.d/mssql-release.list
sudo apt-get update
sudo ACCEPT_EULA=Y apt-get install -y msodbcsql18

If pyodbc is not available, the server starts with 35 tools (SQL tools disabled).

Development

# Clone and install with dev dependencies
git clone https://github.com/your-org/ms-fabric-mcp-server.git
cd ms-fabric-mcp-server
pip install -e ".[dev,sql,telemetry]"

# Run tests
pytest

# Run with coverage
pytest --cov

# Format code
black src tests
isort src tests

# Type checking
mypy src

Integration tests

Integration tests run against live Fabric resources and are opt-in.

To get started locally, copy the example env file:

cp .env.integration.example .env.integration

Required environment variables:

  • FABRIC_INTEGRATION_TESTS=1
  • FABRIC_TEST_WORKSPACE_NAME
  • FABRIC_TEST_LAKEHOUSE_NAME
  • FABRIC_TEST_SQL_DATABASE

Optional pipeline copy inputs:

  • FABRIC_TEST_SOURCE_CONNECTION_ID
  • FABRIC_TEST_SOURCE_TYPE
  • FABRIC_TEST_SOURCE_SCHEMA
  • FABRIC_TEST_SOURCE_TABLE
  • FABRIC_TEST_DEST_CONNECTION_ID
  • FABRIC_TEST_DEST_TABLE_NAME (optional override; defaults to source table name)

Run integration tests:

FABRIC_INTEGRATION_TESTS=1 pytest

Notes:

  • SQL tests require pyodbc and a SQL Server ODBC driver.
  • Tests may skip when optional dependencies or environment variables are missing.
  • These tests use live Fabric resources and may incur costs or side effects.

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured