Mongo-MCP

Mongo-MCP

Enables LLMs to interact with MongoDB databases through a complete suite of CRUD operations, administrative tasks, and index management tools. It supports database and collection handling, aggregation pipelines, and comprehensive server monitoring via the Model Context Protocol.

Category
Visit Server

README

Mongo-MCP

smithery badge English | įŽ€äŊ“中文

A Machine Chat Protocol (MCP) service for MongoDB operations. This service provides a comprehensive set of tools that allow Large Language Models (LLMs) to interact with MongoDB databases through complete CRUD operations, administrative tasks, and advanced features.

Requirements

  • Python 3.10 or above
  • A running MongoDB database service
  • It is recommended to use uv to run the program

🚀 Features

📊 Database Management Tools

  • list_databases - List all databases
  • create_database - Create new database
  • drop_database - Delete database
  • get_database_stats - Get database statistics

đŸ“Ļ Collection Management Tools

  • list_collections - List all collections in a database
  • create_collection - Create new collection (with optional settings)
  • drop_collection - Delete collection
  • rename_collection - Rename collection
  • get_collection_stats - Get collection statistics

📄 Document CRUD Operations

  • insert_document - Insert single document
  • insert_many_documents - Batch insert multiple documents
  • find_documents - Query documents (supports sorting, projection, limit)
  • find_one_document - Query single document
  • count_documents - Count documents matching query
  • update_document - Update documents (single or batch)
  • replace_document - Replace document
  • delete_document - Delete documents (single or batch)

🔍 Index Management Tools

  • list_indexes - List all indexes for a collection
  • create_index - Create regular index
  • create_text_index - Create text search index
  • create_compound_index - Create compound index
  • drop_index - Delete index
  • reindex_collection - Rebuild all indexes for a collection

📈 Aggregation Operations

  • aggregate_documents - Execute aggregation pipeline operations
  • distinct_values - Get distinct values for a field

🔧 Monitoring and Administrative Tools

  • get_server_status - Get MongoDB server status
  • get_replica_set_status - Get replica set status
  • ping_database - Test database connection
  • test_mongodb_connection - Comprehensive connection test
  • get_connection_details - Get detailed connection information

đŸ› ī¸ Technology Stack

  • Python: Primary programming language
  • FastMCP: MCP Python SDK for automatic tool definition generation
  • PyMongo: Official MongoDB Python driver
  • uv: Modern Python package management tool

Usage

Run directly with uvx

uvx run mongo-mcp

The server uses the stdio transport method, making it suitable for integration with MCP clients that support this transport method.

Cursor Example Configuration

If you use Cursor as your development environment, you can add the following configuration to your .cursor/mcp.json file for local debugging:

{
    "mcpServers": {
        "mongo-mcp": {
            "command": "uvx",
            "args": [
                "mongo-mcp"
            ],
            "env": {
                "MONGODB_URI": "mongodb://localhost:27017",
                "MONGODB_DEFAULT_DB": "your_database_name",
                "LOG_LEVEL": "INFO"
            }
        }
    }
}

Environment Variables

Basic Configuration

  • MONGODB_URI: MongoDB connection string (default: "mongodb://localhost:27017")
  • MONGODB_DEFAULT_DB: Default database name (optional)

Connection Pool Configuration

  • MONGODB_MIN_POOL_SIZE: Minimum connection pool size (default: 0)
  • MONGODB_MAX_POOL_SIZE: Maximum connection pool size (default: 100)
  • MONGODB_MAX_IDLE_TIME_MS: Maximum idle time in milliseconds (default: 30000)

Timeout Configuration

  • MONGODB_SERVER_SELECTION_TIMEOUT_MS: Server selection timeout (default: 30000)
  • MONGODB_SOCKET_TIMEOUT_MS: Socket timeout (default: 0 - no timeout)
  • MONGODB_CONNECT_TIMEOUT_MS: Connection timeout (default: 20000)

Security Configuration

  • MONGODB_TLS_ENABLED: Enable TLS connection (default: false)
  • MONGODB_AUTH_SOURCE: Authentication source (default: admin)
  • MONGODB_AUTH_MECHANISM: Authentication mechanism (SCRAM-SHA-1, SCRAM-SHA-256, etc.)

Performance Settings

  • MONGODB_READ_PREFERENCE: Read preference (default: primary)
  • MONGODB_WRITE_CONCERN_W: Write concern (default: 1)
  • MONGODB_READ_CONCERN_LEVEL: Read concern level (default: local)

Logging Configuration

  • LOG_LEVEL: Logging level (default: "INFO")
    • Available values: DEBUG, INFO, WARNING, ERROR, CRITICAL
  • LOG_MAX_FILE_SIZE: Maximum log file size in bytes (default: 10MB)
  • LOG_BACKUP_COUNT: Number of backup log files (default: 5)

Feature Flags

  • ENABLE_DANGEROUS_OPERATIONS: Enable potentially dangerous operations (default: false)
  • ENABLE_ADMIN_OPERATIONS: Enable administrative operations (default: true)
  • ENABLE_INDEX_OPERATIONS: Enable index operations (default: true)

Development Guide

  1. Clone the repository
git clone https://github.com/441126098/mongo-mcp.git
cd mongo-mcp
  1. Install development dependencies
# Using uv (recommended)
uv sync

# Or using pip
pip install -e ".[dev]"
  1. Run tests
uv run pytest tests/ -v
  1. Code Structure
  • src/mongo_mcp/server.py: MCP server implementation
  • src/mongo_mcp/db.py: Core MongoDB operations implementation
  • src/mongo_mcp/config.py: Configuration management
  • src/mongo_mcp/tools/: MCP tools implementation
    • database_tools.py: Database and collection management
    • document_tools.py: Document CRUD operations
    • index_tools.py: Index management
    • aggregation_tools.py: Aggregation operations
    • admin_tools.py: Administrative and monitoring tools
  • src/mongo_mcp/utils/: Utility modules
  • tests/: Test cases

Testing

The project includes comprehensive test coverage:

  • Unit tests for all tool modules
  • Integration tests with MongoDB
  • Mock tests for isolated component testing

Run the test suite:

# Run all tests
uv run pytest

# Run with verbose output
uv run pytest -v

# Run specific test file
uv run pytest tests/test_tools.py

Logging

Log files are stored in the logs directory by default. The logging system supports:

  • Configurable log levels
  • File rotation based on size
  • UTF-8 encoding support
  • Structured logging with function names and line numbers

License

MIT

Contributing

Contributions via Issues and Pull Requests are welcome. Before submitting a PR, please ensure:

  1. All tests pass (uv run pytest)
  2. Appropriate test cases are added
  3. Documentation is updated
  4. Code follows the existing style patterns

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured