MokuPDF

MokuPDF

Enables AI applications to read and process PDF files with intelligent file search, text extraction, image processing, and optional OCR support for scanned documents.

Category
Visit Server

README

MokuPDF - Intelligent PDF Reading Server for AI

Python 3.8+ PyPI version License: MIT MCP Compatible

MokuPDF is a powerful, MCP (Model Context Protocol) compatible server that enables AI applications to read and process PDF files with advanced capabilities. It combines intelligent file search, comprehensive text extraction, image processing, and optional OCR support to handle any type of PDF document - from simple text files to complex scanned documents.

πŸš€ Perfect for Claude Desktop, ChatGPT plugins, and any AI application that needs PDF processing capabilities!

πŸ“‹ Table of Contents

✨ Key Features

πŸ” Intelligent PDF Processing

  • πŸ“„ Full Text Extraction - Extract all text content from any PDF
  • πŸ–ΌοΈ Advanced Image Handling - Extract embedded images as base64 PNG with proper format conversion
  • πŸ“± Scanned PDF Support - Auto-detects and renders image-based/scanned PDFs at high resolution
  • πŸ”€ Optional OCR Integration - Extract text from scanned documents using Tesseract (optional)
  • πŸ“‘ Page-by-Page Processing - Handle large PDFs efficiently without memory issues

🎯 Smart File Operations

  • 🧠 Intelligent File Search - Find PDFs using natural language: "find the report", "open invoice"
  • πŸ“ Multi-Location Search - Automatically searches Desktop, Downloads, Documents, and OneDrive
  • πŸ”— Fuzzy Matching - Handles typos and partial filenames intelligently
  • πŸ” Advanced Text Search - Search within PDFs with regex support and context

πŸ€– AI Integration

  • ⚑ MCP Protocol Compliant - Seamlessly integrates with Claude Desktop and other AI tools
  • πŸ”Œ FastMCP Architecture - Built on the official MCP Python SDK for reliability
  • πŸ“‘ JSON-RPC Interface - Clean, standardized API for easy integration
  • βš™οΈ Configurable & Lightweight - Minimal dependencies, fast startup, customizable options

πŸ“¦ Installation

From Source

# Clone the repository
git clone https://github.com/jameslovespancakes/mokupdf.git
cd mokupdf

# Install the package
pip install .

# Or install in development mode
pip install -e .

Using pip (when published)

# Basic installation
pip install mokupdf

# With OCR support for scanned PDFs
pip install mokupdf[ocr]

Note: For OCR functionality, you'll also need Tesseract installed on your system:

  • Windows: Download from GitHub releases
  • Mac: brew install tesseract
  • Linux: sudo apt-get install tesseract-ocr

🎯 Quick Start

Running the Server

# Start with default settings (port 8000)
mokupdf

# Start with custom port
mokupdf --port 8080

# Enable verbose logging
mokupdf --verbose

# Set custom PDF directory
mokupdf --base-dir ./documents

Command Line Options

Option Description Default
--port Port to listen on 8000
--verbose Enable verbose logging False
--base-dir Base directory for PDF files Current directory
--max-file-size Maximum PDF file size in MB 100
--version Show version information -
--help Show help message -

πŸ”§ MCP Configuration

Add MokuPDF to your MCP configuration file:

{
  "mcpServers": {
    "mokupdf": {
      "command": "python",
      "args": ["-m", "mokupdf"]
    }
  }
}

πŸ“š Available MCP Tools

1. open_pdf

Open a PDF file for processing.

{
  "tool": "open_pdf",
  "arguments": {
    "file_path": "document.pdf"
  }
}

2. read_pdf

Read PDF pages with text and images. Supports page ranges for efficient processing.

{
  "tool": "read_pdf",
  "arguments": {
    "file_path": "document.pdf",
    "start_page": 1,
    "end_page": 5,
    "max_pages": 10
  }
}

Response includes:

  • Text content with [IMAGE: ...] placeholders
  • Base64-encoded images
  • Page information

3. search_text

Search for text within the current PDF.

{
  "tool": "search_text",
  "arguments": {
    "query": "introduction",
    "case_sensitive": false
  }
}

4. get_page_text

Extract text from a specific page.

{
  "tool": "get_page_text",
  "arguments": {
    "page_number": 1
  }
}

5. get_metadata

Get metadata from the current PDF.

{
  "tool": "get_metadata",
  "arguments": {}
}

6. close_pdf

Close the current PDF and free memory.

{
  "tool": "close_pdf", 
  "arguments": {}
}

7. find_pdf_files

Find PDF files using intelligent search across common directories.

{
  "tool": "find_pdf_files",
  "arguments": {
    "query": "financial report",
    "limit": 5
  }
}

πŸ’‘ Usage Examples

🎯 Natural Language File Access

# Instead of exact paths, use natural language
User: "Can you read the financial report from last quarter?"
Claude: Uses find_pdf_files("financial report") β†’ Opens Q3_Financial_Report.pdf

User: "Look at the user manual on my desktop"  
Claude: Searches Desktop β†’ Finds User_Manual_v2.pdf β†’ Processes it

User: "Find all invoices"
Claude: Returns list of all PDFs containing "invoice" from common locations

πŸ“„ Text-Based PDFs

# Regular PDF with embedded images
{
  "tool": "read_pdf",
  "arguments": {
    "file_path": "annual_report.pdf",
    "start_page": 1,
    "max_pages": 10
  }
}

# Response includes:
# - Extracted text content
# - Image placeholders: [IMAGE: Image 1 - 800x600px]  
# - Base64-encoded images array
# - Page metadata

πŸ–ΌοΈ Scanned PDFs (Image-Based)

# Scanned document without OCR
{
  "tool": "read_pdf",
  "arguments": {
    "file_path": "scanned_contract.pdf"
  }
}

# Response:
# - "[SCANNED PAGE: This page appears to be a scanned image]"
# - "[IMAGE: Full Page Scan - 1654x2339px]"
# - High-resolution page image as base64

# With OCR enabled (pip install mokupdf[ocr])
# Response:
# - "[SCANNED PAGE - OCR EXTRACTED TEXT]:"  
# - "Actual extracted text content..."
# - "[IMAGE: Full Page Scan - 1654x2339px]"
# - Original page image as base64

πŸ” Smart Search & Discovery

# Find files by content or name
{
  "tool": "find_pdf_files", 
  "arguments": {
    "query": "invoice 2024",
    "limit": 5
  }
}

# Response includes:
# - Ranked list of matching files
# - File metadata (size, modification date, location)
# - Relevance scores

πŸ–ΌοΈ Image & Scanned PDF Support

MokuPDF automatically handles different PDF types:

PDF Type Text Extraction Image Handling OCR Support
Text-based PDF βœ… Direct extraction βœ… Embedded images extracted βž– Not needed
Mixed PDF βœ… Text + images βœ… All images extracted βž– Not needed
Scanned PDF ⚠️ Limited/None βœ… Full page rendered βœ… Optional OCR
Image-only PDF βž– None βœ… Full page rendered βœ… Optional OCR

OCR Installation

# Install with OCR support
pip install mokupdf[ocr]

# Install Tesseract system dependency
# Windows: Download from GitHub releases
# Mac: brew install tesseract  
# Linux: sudo apt-get install tesseract-ocr

πŸ” Smart File Search

MokuPDF's intelligent file finder works with natural language:

Search Patterns

  • Exact matches: "report" β†’ Annual_Report.pdf
  • Partial matches: "ann" β†’ Annual_Report.pdf
  • Multiple terms: "financial report 2024" β†’ Financial_Report_2024.pdf
  • Fuzzy matching: "finacial" β†’ Financial_Report.pdf (handles typos)

Search Locations

  • Current working directory
  • ~/Desktop
  • ~/Downloads
  • ~/Documents
  • ~/OneDrive/Desktop (if available)
  • ~/OneDrive/Documents (if available)

Ranking System

Files are ranked by:

  • Exact name matches (highest priority)
  • Word boundary matches
  • Partial string matches
  • Recent modification time (boost for recent files)
  • File location (Desktop files prioritized)

βš™οΈ Configuration Options

Command Line Arguments

mokupdf --help

Options:
  --base-dir PATH        Base directory for PDF files (default: current)
  --max-file-size INT    Maximum PDF size in MB (default: 100)
  --port INT            Port number (legacy, ignored by FastMCP)
  --verbose             Enable verbose logging (legacy, ignored)
  --version             Show version information

MCP Server Configuration

{
  "mcpServers": {
    "mokupdf": {
      "command": "python",
      "args": ["-m", "mokupdf", "--base-dir", "./documents", "--max-file-size", "200"]
    }
  }
}

πŸ’» Development

Project Structure

mokupdf/
β”œβ”€β”€ mokupdf/
β”‚   β”œβ”€β”€ __init__.py       # Package initialization
β”‚   β”œβ”€β”€ server.py         # Main server implementation
β”‚   └── __main__.py       # Module entry point
β”œβ”€β”€ setup.py              # Package setup script
β”œβ”€β”€ pyproject.toml        # Modern Python packaging
β”œβ”€β”€ requirements.txt      # Direct dependencies
β”œβ”€β”€ LICENSE              # MIT License
└── README.md           # This file

Running Tests

# Install development dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Run with coverage
pytest --cov=mokupdf

Code Quality

# Format code
black mokupdf/

# Lint code  
flake8 mokupdf/

Architecture

MokuPDF is built using:

  • FastMCP: Official MCP Python SDK for reliable protocol handling
  • PyMuPDF (fitz): High-performance PDF processing and rendering
  • Pillow: Image format conversion and processing
  • pytesseract: Optional OCR text extraction from scanned documents

πŸ› οΈ Troubleshooting

Common Issues

πŸ”Έ "ModuleNotFoundError: No module named 'mokupdf'"

# Install the package
pip install mokupdf

πŸ”Έ "No PDF is currently open"

# Always open a PDF first, or provide file_path in read_pdf
{
  "tool": "open_pdf",
  "arguments": {"file_path": "document.pdf"}
}

πŸ”Έ "PDF file not found"

# Use smart search instead of exact paths
{
  "tool": "find_pdf_files",
  "arguments": {"query": "document"}
}

πŸ”Έ OCR not working

# Install OCR dependencies
pip install mokupdf[ocr]

# Windows: Download Tesseract from GitHub releases
# Mac: brew install tesseract
# Linux: sudo apt-get install tesseract-ocr  

πŸ”Έ "File too large" errors

# Increase file size limit
mokupdf --max-file-size 500  # Allow 500MB files

Debug Mode

# Enable verbose logging for detailed information
mokupdf --verbose

# Check MCP connection in Claude Desktop developer tools
# Press Ctrl+Shift+I in Claude Desktop

πŸ“ˆ Performance Tips

  • Large PDFs: Use start_page and end_page parameters for chunked processing
  • Memory usage: Close PDFs when done with close_pdf tool
  • OCR speed: OCR processing adds significant time - disable if not needed
  • File search: Search is cached - repeated searches are faster
  • Image quality: Scanned pages rendered at 2x resolution for clarity

πŸ—ΊοΈ Roadmap

  • [ ] Advanced OCR: Multiple language support, confidence scores
  • [ ] Enhanced Search: Content-based PDF search (search inside PDF text)
  • [ ] Batch Processing: Process multiple PDFs simultaneously
  • [ ] Format Support: Add support for other document formats (DOCX, PPTX)
  • [ ] Cloud Integration: Support for cloud storage (Google Drive, OneDrive API)
  • [ ] Performance: Async processing for better concurrent handling

πŸ” Example Usage

Python Script Example

import json
import subprocess

# Start MokuPDF server
process = subprocess.Popen(
    ["mokupdf", "--port", "8000"],
    stdin=subprocess.PIPE,
    stdout=subprocess.PIPE,
    text=True
)

# Send a request to open a PDF
request = {
    "jsonrpc": "2.0",
    "method": "tools/call",
    "params": {
        "name": "open_pdf",
        "arguments": {"file_path": "example.pdf"}
    },
    "id": 1
}

# Send request
process.stdin.write(json.dumps(request) + "\n")
process.stdin.flush()

# Read response
response = json.loads(process.stdout.readline())
print(f"PDF opened: {response['result']}")

Integration with LLMs

MokuPDF is designed to work seamlessly with LLM applications through MCP. The read_pdf tool returns content in a format optimized for LLM consumption:

  1. Text is extracted with page markers
  2. Images are embedded as base64 PNG with placeholders in text
  3. Large PDFs can be read page-by-page to avoid context limits

πŸ› οΈ Troubleshooting

Common Issues

Issue: ModuleNotFoundError: No module named 'mokupdf'

  • Solution: Install the package with pip install .

Issue: Port already in use

  • Solution: Use a different port with --port 8081

Issue: PDF file not found

  • Solution: Check the base directory and ensure paths are relative to it

Issue: Large PDF causes timeout

  • Solution: Use page-by-page reading with start_page and end_page parameters

Debug Mode

Enable verbose logging for detailed information:

mokupdf --verbose

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

🀝 Contributing

We welcome contributions! MokuPDF is designed to be the best PDF processing tool for AI applications.

How to Contribute

  1. 🍴 Fork the repository
  2. 🌿 Create a feature branch: git checkout -b feature/amazing-feature
  3. πŸ“ Make your changes with clear, documented code
  4. βœ… Add tests for new functionality
  5. 🧹 Run code formatting: black mokupdf/
  6. ✨ Submit a pull request

Development Setup

# Clone your fork
git clone https://github.com/yourusername/mokupdf.git
cd mokupdf

# Install in development mode with all dependencies  
pip install -e ".[dev,ocr]"

# Run tests
pytest

# Format code
black mokupdf/
flake8 mokupdf/

Contribution Ideas

  • 🌍 Multi-language OCR support
  • ⚑ Performance optimizations
  • πŸ” Advanced search algorithms
  • πŸ“± New document format support
  • πŸ› Bug fixes and improvements
  • πŸ“š Documentation enhancements

πŸ“ž Support & Community

Getting Help

  • πŸ“ Issues: Open a GitHub issue for bugs or feature requests
  • πŸ’¬ Discussions: Use GitHub Discussions for questions and community support
  • πŸ”§ Troubleshooting: Enable --verbose mode for detailed debugging information

Reporting Bugs

When reporting issues, please include:

  • Operating system and Python version
  • MokuPDF version (mokupdf --version)
  • Sample PDF file (if possible)
  • Complete error message and traceback
  • Steps to reproduce the issue

πŸ™ Acknowledgments

MokuPDF is built on the shoulders of giants:

  • PyMuPDF - Exceptional PDF processing and rendering capabilities
  • FastMCP - Official MCP Python SDK for reliable protocol handling
  • Tesseract OCR - Open-source OCR engine for text extraction
  • Pillow - Python Imaging Library for image processing
  • Model Context Protocol - Standardized protocol for AI tool integration

Special thanks to the AI and open-source communities for inspiration and feedback.

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

MIT License Summary

  • βœ… Commercial use - Use in commercial applications
  • βœ… Modification - Modify and distribute changes
  • βœ… Distribution - Distribute original or modified versions
  • βœ… Private use - Use privately without restrictions
  • ❌ No warranty - Software provided "as-is"
  • βš–οΈ License notice - Include original license in copies

<div align="center">

πŸš€ Made with ❀️ for the AI community

PyPI Downloads GitHub stars

⭐ Star us on GitHub β€’ πŸ“¦ Install from PyPI β€’ πŸ“š Read the Docs

</div>

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured