Model Context Protocol Server

Model Context Protocol Server

Provides a standardized protocol for tool invocation, enabling an AI system to search the web, retrieve information, and provide relevant answers through integration with LangChain, RAG, and Ollama.

Category
Visit Server

README

Search Engine with RAG and MCP

A powerful search engine that combines LangChain, Model Context Protocol (MCP), Retrieval-Augmented Generation (RAG), and Ollama to create an agentic AI system capable of searching the web, retrieving information, and providing relevant answers.

Features

  • Web search capabilities using the Exa API
  • Web content retrieval using FireCrawl
  • RAG (Retrieval-Augmented Generation) for more relevant information extraction
  • MCP (Model Context Protocol) server for standardized tool invocation
  • Support for both local LLMs via Ollama and cloud-based LLMs via OpenAI
  • Flexible architecture supporting direct search, agent-based search, or server mode
  • Comprehensive error handling and graceful fallbacks
  • Python 3.13+ with type hints
  • Asynchronous processing for efficient web operations

Architecture

This project integrates several key components:

  1. Search Module: Uses Exa API to search the web and FireCrawl to retrieve content
  2. RAG Module: Embeds documents, chunks them, and stores them in a FAISS vector store
  3. MCP Server: Provides a standardized protocol for tool invocation
  4. Agent: LangChain-based agent that uses the search and RAG capabilities

Project Structure

search-engine-with-rag-and-mcp/
├── LICENSE              # MIT License
├── README.md            # Project documentation
├── data/                # Data directories
├── docs/                # Documentation
│   └── env_template.md  # Environment variables documentation
├── logs/                # Log files directory (auto-created)
├── src/                 # Main package (source code)
│   ├── __init__.py      
│   ├── core/            # Core functionality
│   │   ├── __init__.py
│   │   ├── main.py      # Main entry point
│   │   ├── search.py    # Web search module
│   │   ├── rag.py       # RAG implementation
│   │   ├── agent.py     # LangChain agent
│   │   └── mcp_server.py # MCP server implementation
│   └── utils/           # Utility modules
│       ├── __init__.py
│       ├── env.py       # Environment variable loading
│       └── logger.py    # Logging configuration
├── pyproject.toml       # Poetry configuration
├── requirements.txt     # Project dependencies
└── tests/               # Test directory

Getting Started

Prerequisites

  • Python 3.13+
  • Poetry (optional, for development)
  • API keys for Exa and FireCrawl
  • (Optional) Ollama installed locally
  • (Optional) OpenAI API key

Installation

  1. Clone the repository
git clone https://github.com/yourusername/search-engine-with-rag-and-mcp.git
cd search-engine-with-rag-and-mcp
  1. Install dependencies
# Using pip
pip install -r requirements.txt

# Or using poetry
poetry install
  1. Create a .env file (use docs/env_template.md as a reference)

Usage

The application has three main modes of operation:

1. Direct Search Mode (Default)

# Using pip
python -m src.core.main "your search query"

# Or using poetry
poetry run python -m src.core.main "your search query"

2. Agent Mode

python -m src.core.main --agent "your search query"

3. MCP Server Mode

python -m src.core.main --server

You can also specify custom host and port:

python -m src.core.main --server --host 0.0.0.0 --port 8080

Using Ollama (Optional)

To use Ollama for local embeddings and LLM capabilities:

  1. Install Ollama: https://ollama.ai/
  2. Pull a model:
ollama pull mistral:latest
  1. Set the appropriate environment variables in your .env file:
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_MODEL=mistral:latest

Development

This project follows these best practices:

  • Code formatting: Black and isort for consistent code style
  • Type checking: mypy for static type checking
  • Linting: flake8 for code quality
  • Testing: pytest for unit and integration tests
  • Environment Management: python-dotenv for managing environment variables
  • Logging: Structured logging to both console and file

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgements

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured