MkDocs MCP Server

MkDocs MCP Server

Enables AI assistants to access and search MkDocs documentation through tools for full-text search, page navigation, and code block extraction. It serves documentation pages as readable resources and provides structural outlines to help LLMs navigate documentation content.

Category
Visit Server

README

MkDocs MCP Example

Python MkDocs MCP uv License: MIT

A comprehensive example project demonstrating the integration of MkDocs Material documentation with a Model Context Protocol (MCP) server, showcasing modern Python development practices with uv, devcontainers, and VSCode.

๐ŸŒŸ Features

๐Ÿ“š Beautiful Documentation

  • MkDocs Material theme with modern design
  • Responsive layout for all devices
  • Advanced search with full-text indexing
  • Dark/light mode with system preference detection
  • Mermaid diagrams and syntax highlighting
  • Auto-generated API documentation with mkdocstrings

๐Ÿค– AI-Powered Documentation Access

  • MCP Server providing AI access to documentation
  • Resource serving for direct content access
  • Advanced search tools for content discovery
  • Code block extraction and analysis
  • Page outline generation and navigation

๐Ÿ› ๏ธ Modern Development Stack

  • Python 3.11+ with type hints and modern practices
  • uv for lightning-fast dependency management
  • DevContainers for consistent development environments
  • VSCode integration with comprehensive tooling
  • Rootless Podman support for secure containerization

๐Ÿงช Quality Assurance

  • Comprehensive testing with pytest and coverage
  • Code formatting with Ruff
  • Type checking with MyPy
  • Pre-commit hooks for automated quality checks
  • CI/CD ready configuration

๐Ÿš€ Quick Start

Prerequisites

  • Podman (rootless preferred)
  • VSCode with Dev Containers extension
  • Git

1. Clone & Open

git clone https://github.com/robmatesick/mkdocs-mcp-example.git
cd mkdocs-mcp-example
code .

2. Start DevContainer

  • Press Ctrl+Shift+P (Windows/Linux) or Cmd+Shift+P (macOS)
  • Select "Dev Containers: Reopen in Container"
  • Wait for container setup (~5-10 minutes on first run)

3. Start Development

# Terminal 1: Documentation server
make docs-serve

# Terminal 2: MCP server
make mcp-server

Visit http://localhost:8000 to see your documentation!

๐Ÿ“ Project Structure

mkdocs-mcp-example/
โ”œโ”€โ”€ ๐Ÿ“ docs/                    # Documentation source
โ”‚   โ”œโ”€โ”€ index.md               # Homepage
โ”‚   โ”œโ”€โ”€ getting-started/       # Setup guides
โ”‚   โ”œโ”€โ”€ mcp-server/           # MCP documentation  
โ”‚   โ”œโ”€โ”€ api/                  # Auto-generated API docs
โ”‚   โ””โ”€โ”€ examples/             # Usage examples
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ mkdocs-site/            # MkDocs configuration
โ”‚   โ”œโ”€โ”€ mkdocs.yml            # Main configuration
โ”‚   โ”œโ”€โ”€ pyproject.toml        # Dependencies
โ”‚   โ””โ”€โ”€ docs/                 # Theme customizations
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ mcp-server/             # MCP server implementation
โ”‚   โ”œโ”€โ”€ src/mkdocs_mcp/       # Source code
โ”‚   โ”‚   โ”œโ”€โ”€ server.py         # Main server
โ”‚   โ”‚   โ”œโ”€โ”€ resources.py      # Resource management
โ”‚   โ”‚   โ””โ”€โ”€ tools.py          # Search tools
โ”‚   โ”œโ”€โ”€ tests/                # Unit tests
โ”‚   โ””โ”€โ”€ pyproject.toml        # Dependencies
โ”‚
โ”œโ”€โ”€ ๐Ÿ“ .devcontainer/          # DevContainer config
โ”œโ”€โ”€ ๐Ÿ“ .vscode/                # VSCode settings
โ”œโ”€โ”€ ๐Ÿ“ tests/                  # Integration tests
โ”œโ”€โ”€ pyproject.toml             # Workspace configuration
โ”œโ”€โ”€ Makefile                   # Development commands
โ””โ”€โ”€ README.md                  # This file

๐Ÿ”ง Development Commands

The project includes a comprehensive Makefile with common development tasks:

๐Ÿ“ฆ Setup & Installation

make setup          # Complete development setup
make install        # Install dependencies only

๐Ÿงน Code Quality

make format         # Format code with Ruff
make lint           # Lint code and fix issues
make typecheck      # Run MyPy type checking
make quality        # Run all quality checks

๐Ÿงช Testing

make test           # Run all tests
make test-cov       # Run tests with coverage
make test-watch     # Run tests in watch mode

๐Ÿ“š Documentation

make docs-serve     # Start documentation server
make docs-build     # Build static documentation
make docs-clean     # Clean build artifacts

๐Ÿค– MCP Server

make mcp-server     # Start MCP server
make mcp-test       # Run MCP server tests

๐Ÿš€ Development Workflow

make dev            # Start both docs and MCP server
make clean          # Clean all build artifacts
make ci-check       # Run all CI checks

๐Ÿ—๏ธ Architecture

graph TB
    A[๐Ÿ“š MkDocs Site] --> B[๐Ÿ“„ Documentation Files]
    B --> C[๐Ÿค– MCP Server]
    C --> D[๐Ÿง  AI Assistant]
    D --> E[๐Ÿ‘ฅ Users]
    
    F[๐Ÿ‘จโ€๐Ÿ’ป Developer] --> G[๐Ÿณ DevContainer]
    G --> H[๐Ÿ“ฆ uv Environment]
    H --> A
    H --> C
    
    I[๐Ÿ”„ CI/CD] --> J[๐Ÿงช Tests]
    I --> K[๐Ÿ—๏ธ Build]
    I --> L[๐Ÿš€ Deploy]

๐Ÿค– MCP Server Usage

The MCP server provides AI assistants with direct access to your documentation:

Available Resources

  • Documentation pages as readable resources
  • Automatic metadata extraction from frontmatter
  • Hierarchical navigation support

Available Tools

  • search_docs - Full-text search across documentation
  • find_by_title - Find pages by title or heading
  • list_pages - List all available documentation pages
  • get_page_outline - Extract page structure and headings
  • search_code_blocks - Find and filter code examples

Example Usage

from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

# Connect to MCP server
server_params = StdioServerParameters(
    command="python", 
    args=["-m", "mkdocs_mcp.server"]
)

async with stdio_client(server_params) as (read, write):
    async with ClientSession(read, write) as session:
        # List available documentation
        resources = await session.list_resources()
        print(f"Found {len(resources.resources)} pages")
        
        # Search documentation
        result = await session.call_tool("search_docs", {
            "query": "installation",
            "max_results": 5
        })
        print(result.content[0].text)

๐Ÿƒโ€โ™‚๏ธ Getting Started Guide

For Documentation Writers

  1. Edit content in the docs/ directory
  2. Add new pages and update navigation in mkdocs.yml
  3. Preview changes at http://localhost:8000
  4. Use Markdown features like admonitions, code blocks, and diagrams

For Python Developers

  1. Modify MCP server in mcp-server/src/mkdocs_mcp/
  2. Add new tools or resources for AI access
  3. Run tests with make test
  4. Follow type hints and modern Python practices

For DevOps Engineers

  1. Customize DevContainer in .devcontainer/
  2. Configure CI/CD pipelines using the Makefile targets
  3. Deploy documentation using MkDocs build outputs
  4. Monitor MCP server performance and usage

๐Ÿ”’ Security & Best Practices

  • Rootless containers for enhanced security
  • No secrets in code - use environment variables
  • Input validation in MCP server endpoints
  • Type safety with comprehensive type hints
  • Dependency scanning with automated security checks

๐Ÿ“– Documentation

Complete documentation is available at:

๐Ÿค Contributing

We welcome contributions! Please see our Contributing Guide for details.

Development Setup

  1. Fork the repository
  2. Clone your fork
  3. Open in DevContainer
  4. Run make setup
  5. Make your changes
  6. Run make ci-check
  7. Submit a pull request

๐Ÿ“‹ Requirements

System Requirements

  • OS: Linux, macOS, or Windows with WSL2
  • RAM: 4GB minimum, 8GB recommended
  • Storage: 2GB free space

Software Requirements

  • Python: 3.11 or higher
  • Podman: Latest stable version
  • VSCode: With Dev Containers extension
  • Git: For version control

๐Ÿ†˜ Troubleshooting

Common Issues

Container build fails

# Clean Podman cache and try again
podman system prune -a

# Or rebuild DevContainer from VSCode
# Ctrl+Shift+P -> "Dev Containers: Rebuild Container"

Port conflicts

make docs-serve MKDOCS_PORT=8002

Dependency issues

make clean
make dev-install

See the Troubleshooting Guide for more solutions.

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

๐Ÿ“ž Support


โญ Star this repo if you find it helpful!

Built with โค๏ธ using modern Python development practices.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured