Memos MCP Server

Memos MCP Server

Enables AI assistants to interact with Memos instances for knowledge management. Supports searching, creating, updating, and retrieving memos with markdown content, tags, and visibility controls.

Category
Visit Server

README

Memos MCP Server

An MCP (Model Context Protocol) server that provides tools for interacting with a Memos instance. This server allows AI assistants to search, create, and update memos through the Memos API.

Features

  • Search Memos: Search for memos with filters like creator, tags, visibility, and content
  • Create Memos: Create new memos with markdown support
  • Update Memos: Update existing memos (content, visibility, pinned status)
  • Get Memo: Retrieve a specific memo by UID

Installation

  1. Clone this repository:
git clone <repository-url>
cd memos_mcp
  1. Install dependencies:

Using uv (recommended)

uv sync

Using pip

pip install -r requirements.txt

Configuration

Set the following environment variables:

  • MEMOS_BASE_URL: The base URL of your Memos instance (default: http://localhost:5230)
  • MEMOS_API_TOKEN: Your Memos API authentication token (optional for public instances)

Getting an API Token

  1. Log into your Memos instance
  2. Go to Settings → Access Tokens
  3. Create a new access token
  4. Copy the token and set it as the MEMOS_API_TOKEN environment variable

Example:

export MEMOS_BASE_URL="https://memos.example.com"
export MEMOS_API_TOKEN="your-token-here"

Usage

Running the Server

Using uvx (no installation required)

# Run directly with uvx
uvx --from . memos-mcp

Using uv after installation

# After running 'uv sync'
uv run memos-mcp

Using FastMCP directly

fastmcp run server.py

Programmatic usage

from server import mcp

# The server is ready to use

Available Tools

1. search_memos

Search for memos with optional filters.

Parameters:

  • query (optional): Text to search for in memo content
  • creator_id (optional): Filter by creator user ID
  • tag (optional): Filter by tag name
  • visibility (optional): Filter by visibility (PUBLIC, PROTECTED, PRIVATE)
  • limit (default: 10): Maximum number of results
  • offset (default: 0): Number of results to skip

Example:

result = await search_memos(query="meeting notes", limit=5)

2. create_memo

Create a new memo.

Parameters:

  • content: The content of the memo (supports Markdown)
  • visibility (default: PRIVATE): Visibility level (PUBLIC, PROTECTED, PRIVATE)

Example:

result = await create_memo(
    content="# Meeting Notes\n\n- Discuss project timeline\n- Review budget",
    visibility="PRIVATE"
)

3. update_memo

Update an existing memo.

Parameters:

  • memo_uid: The UID of the memo to update
  • content (optional): New content for the memo
  • visibility (optional): New visibility level
  • pinned (optional): Whether to pin the memo

Example:

result = await update_memo(
    memo_uid="abc123",
    content="Updated content",
    pinned=True
)

4. get_memo

Get a specific memo by its UID.

Parameters:

  • memo_uid: The UID of the memo to retrieve

Example:

result = await get_memo(memo_uid="abc123")

Integration with MCP Clients

Claude Desktop

Add to your Claude Desktop configuration file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

Using uvx (recommended - no installation needed)

{
  "mcpServers": {
    "memos": {
      "command": "uvx",
      "args": ["--from", "/path/to/memos_mcp", "memos-mcp"],
      "env": {
        "MEMOS_BASE_URL": "http://localhost:5230",
        "MEMOS_API_TOKEN": "your-token-here"
      }
    }
  }
}

Using uv (after installation)

{
  "mcpServers": {
    "memos": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/memos_mcp", "memos-mcp"],
      "env": {
        "MEMOS_BASE_URL": "http://localhost:5230",
        "MEMOS_API_TOKEN": "your-token-here"
      }
    }
  }
}

Using Python directly

{
  "mcpServers": {
    "memos": {
      "command": "python",
      "args": ["-m", "fastmcp", "run", "/path/to/memos_mcp/server.py"],
      "env": {
        "MEMOS_BASE_URL": "http://localhost:5230",
        "MEMOS_API_TOKEN": "your-token-here"
      }
    }
  }
}

API Reference

This server is built on the Memos API v1. The API follows Google's API Improvement Proposals (AIPs) design guidelines.

API Endpoints Used

  • GET /api/v1/memos - List/search memos
  • POST /api/v1/memos - Create a memo
  • GET /api/v1/memos/{uid} - Get a specific memo
  • PATCH /api/v1/memos/{uid} - Update a memo

Authentication

The server supports Bearer token authentication. Include your access token in the Authorization header:

Authorization: Bearer your-token-here

Development

Running Tests

pytest

Code Structure

  • server.py: Main MCP server implementation with all tools
  • requirements.txt: Python dependencies

About Memos

Memos is a lightweight, self-hosted memo hub with knowledge management and social networking features. Learn more at:

  • Website: https://www.usememos.com/
  • GitHub: https://github.com/usememos/memos

License

MIT License - see LICENSE file for details

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured