Memos MCP Server
Enables AI assistants to interact with Memos instances for knowledge management. Supports searching, creating, updating, and retrieving memos with markdown content, tags, and visibility controls.
README
Memos MCP Server
An MCP (Model Context Protocol) server that provides tools for interacting with a Memos instance. This server allows AI assistants to search, create, and update memos through the Memos API.
Features
- Search Memos: Search for memos with filters like creator, tags, visibility, and content
- Create Memos: Create new memos with markdown support
- Update Memos: Update existing memos (content, visibility, pinned status)
- Get Memo: Retrieve a specific memo by UID
Installation
- Clone this repository:
git clone <repository-url>
cd memos_mcp
- Install dependencies:
Using uv (recommended)
uv sync
Using pip
pip install -r requirements.txt
Configuration
Set the following environment variables:
MEMOS_BASE_URL: The base URL of your Memos instance (default:http://localhost:5230)MEMOS_API_TOKEN: Your Memos API authentication token (optional for public instances)
Getting an API Token
- Log into your Memos instance
- Go to Settings → Access Tokens
- Create a new access token
- Copy the token and set it as the
MEMOS_API_TOKENenvironment variable
Example:
export MEMOS_BASE_URL="https://memos.example.com"
export MEMOS_API_TOKEN="your-token-here"
Usage
Running the Server
Using uvx (no installation required)
# Run directly with uvx
uvx --from . memos-mcp
Using uv after installation
# After running 'uv sync'
uv run memos-mcp
Using FastMCP directly
fastmcp run server.py
Programmatic usage
from server import mcp
# The server is ready to use
Available Tools
1. search_memos
Search for memos with optional filters.
Parameters:
query(optional): Text to search for in memo contentcreator_id(optional): Filter by creator user IDtag(optional): Filter by tag namevisibility(optional): Filter by visibility (PUBLIC, PROTECTED, PRIVATE)limit(default: 10): Maximum number of resultsoffset(default: 0): Number of results to skip
Example:
result = await search_memos(query="meeting notes", limit=5)
2. create_memo
Create a new memo.
Parameters:
content: The content of the memo (supports Markdown)visibility(default: PRIVATE): Visibility level (PUBLIC, PROTECTED, PRIVATE)
Example:
result = await create_memo(
content="# Meeting Notes\n\n- Discuss project timeline\n- Review budget",
visibility="PRIVATE"
)
3. update_memo
Update an existing memo.
Parameters:
memo_uid: The UID of the memo to updatecontent(optional): New content for the memovisibility(optional): New visibility levelpinned(optional): Whether to pin the memo
Example:
result = await update_memo(
memo_uid="abc123",
content="Updated content",
pinned=True
)
4. get_memo
Get a specific memo by its UID.
Parameters:
memo_uid: The UID of the memo to retrieve
Example:
result = await get_memo(memo_uid="abc123")
Integration with MCP Clients
Claude Desktop
Add to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
Using uvx (recommended - no installation needed)
{
"mcpServers": {
"memos": {
"command": "uvx",
"args": ["--from", "/path/to/memos_mcp", "memos-mcp"],
"env": {
"MEMOS_BASE_URL": "http://localhost:5230",
"MEMOS_API_TOKEN": "your-token-here"
}
}
}
}
Using uv (after installation)
{
"mcpServers": {
"memos": {
"command": "uv",
"args": ["run", "--directory", "/path/to/memos_mcp", "memos-mcp"],
"env": {
"MEMOS_BASE_URL": "http://localhost:5230",
"MEMOS_API_TOKEN": "your-token-here"
}
}
}
}
Using Python directly
{
"mcpServers": {
"memos": {
"command": "python",
"args": ["-m", "fastmcp", "run", "/path/to/memos_mcp/server.py"],
"env": {
"MEMOS_BASE_URL": "http://localhost:5230",
"MEMOS_API_TOKEN": "your-token-here"
}
}
}
}
API Reference
This server is built on the Memos API v1. The API follows Google's API Improvement Proposals (AIPs) design guidelines.
API Endpoints Used
GET /api/v1/memos- List/search memosPOST /api/v1/memos- Create a memoGET /api/v1/memos/{uid}- Get a specific memoPATCH /api/v1/memos/{uid}- Update a memo
Authentication
The server supports Bearer token authentication. Include your access token in the Authorization header:
Authorization: Bearer your-token-here
Development
Running Tests
pytest
Code Structure
server.py: Main MCP server implementation with all toolsrequirements.txt: Python dependencies
About Memos
Memos is a lightweight, self-hosted memo hub with knowledge management and social networking features. Learn more at:
- Website: https://www.usememos.com/
- GitHub: https://github.com/usememos/memos
License
MIT License - see LICENSE file for details
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.