Memory Server with Qdrant Persistence

Memory Server with Qdrant Persistence

Facilitates knowledge graph representation with semantic search using Qdrant, supporting OpenAI embeddings for semantic similarity and robust HTTPS integration with file-based graph persistence.

delorenj

AI Memory Systems
Database Interaction
AI Integration Systems
Visit Server

README

MCP Memory Server with Qdrant Persistence

smithery badge

This MCP server provides a knowledge graph implementation with semantic search capabilities powered by Qdrant vector database.

Features

  • Graph-based knowledge representation with entities and relations
  • File-based persistence (memory.json)
  • Semantic search using Qdrant vector database
  • OpenAI embeddings for semantic similarity
  • HTTPS support with reverse proxy compatibility
  • Docker support for easy deployment

Environment Variables

The following environment variables are required:

# OpenAI API key for generating embeddings
OPENAI_API_KEY=your-openai-api-key

# Qdrant server URL (supports both HTTP and HTTPS)
QDRANT_URL=https://your-qdrant-server

# Qdrant API key (if authentication is enabled)
QDRANT_API_KEY=your-qdrant-api-key

# Name of the Qdrant collection to use
QDRANT_COLLECTION_NAME=your-collection-name

Setup

Local Setup

  1. Install dependencies:
npm install
  1. Build the server:
npm run build

Docker Setup

  1. Build the Docker image:
docker build -t mcp-qdrant-memory .
  1. Run the Docker container with required environment variables:
docker run -d \
  -e OPENAI_API_KEY=your-openai-api-key \
  -e QDRANT_URL=http://your-qdrant-server:6333 \
  -e QDRANT_COLLECTION_NAME=your-collection-name \
  -e QDRANT_API_KEY=your-qdrant-api-key \
  --name mcp-qdrant-memory \
  mcp-qdrant-memory

Add to MCP settings:

{
  "mcpServers": {
    "memory": {
      "command": "/bin/zsh",
      "args": ["-c", "cd /path/to/server && node dist/index.js"],
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key",
        "QDRANT_API_KEY": "your-qdrant-api-key",
        "QDRANT_URL": "http://your-qdrant-server:6333",
        "QDRANT_COLLECTION_NAME": "your-collection-name"
      },
      "alwaysAllow": [
        "create_entities",
        "create_relations",
        "add_observations",
        "delete_entities",
        "delete_observations",
        "delete_relations",
        "read_graph",
        "search_similar"
      ]
    }
  }
}

Tools

Entity Management

  • create_entities: Create multiple new entities
  • create_relations: Create relations between entities
  • add_observations: Add observations to entities
  • delete_entities: Delete entities and their relations
  • delete_observations: Delete specific observations
  • delete_relations: Delete specific relations
  • read_graph: Get the full knowledge graph

Semantic Search

  • search_similar: Search for semantically similar entities and relations
    interface SearchParams {
      query: string;     // Search query text
      limit?: number;    // Max results (default: 10)
    }
    

Implementation Details

The server maintains two forms of persistence:

  1. File-based (memory.json):

    • Complete knowledge graph structure
    • Fast access to full graph
    • Used for graph operations
  2. Qdrant Vector DB:

    • Semantic embeddings of entities and relations
    • Enables similarity search
    • Automatically synchronized with file storage

Synchronization

When entities or relations are modified:

  1. Changes are written to memory.json
  2. Embeddings are generated using OpenAI
  3. Vectors are stored in Qdrant
  4. Both storage systems remain consistent

Search Process

When searching:

  1. Query text is converted to embedding
  2. Qdrant performs similarity search
  3. Results include both entities and relations
  4. Results are ranked by semantic similarity

Example Usage

// Create entities
await client.callTool("create_entities", {
  entities: [{
    name: "Project",
    entityType: "Task",
    observations: ["A new development project"]
  }]
});

// Search similar concepts
const results = await client.callTool("search_similar", {
  query: "development tasks",
  limit: 5
});

HTTPS and Reverse Proxy Configuration

The server supports connecting to Qdrant through HTTPS and reverse proxies. This is particularly useful when:

  • Running Qdrant behind a reverse proxy like Nginx or Apache
  • Using self-signed certificates
  • Requiring custom SSL/TLS configurations

Setting up with a Reverse Proxy

  1. Configure your reverse proxy (example using Nginx):
server {
    listen 443 ssl;
    server_name qdrant.yourdomain.com;

    ssl_certificate /path/to/cert.pem;
    ssl_certificate_key /path/to/key.pem;

    location / {
        proxy_pass http://localhost:6333;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
    }
}
  1. Update your environment variables:
QDRANT_URL=https://qdrant.yourdomain.com

Security Considerations

The server implements robust HTTPS handling with:

  • Custom SSL/TLS configuration
  • Proper certificate verification options
  • Connection pooling and keepalive
  • Automatic retry with exponential backoff
  • Configurable timeouts

Troubleshooting HTTPS Connections

If you experience connection issues:

  1. Verify your certificates:
openssl s_client -connect qdrant.yourdomain.com:443
  1. Test direct connectivity:
curl -v https://qdrant.yourdomain.com/collections
  1. Check for any proxy settings:
env | grep -i proxy

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Submit a pull request

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
AIO-MCP Server

AIO-MCP Server

🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from

Featured
Local
Persistent Knowledge Graph

Persistent Knowledge Graph

An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.

Featured
Local
Hyperbrowser MCP Server

Hyperbrowser MCP Server

Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to

Featured
Local
React MCP

React MCP

react-mcp integrates with Claude Desktop, enabling the creation and modification of React apps based on user prompts

Featured
Local
Atlassian Integration

Atlassian Integration

Model Context Protocol (MCP) server for Atlassian Cloud products (Confluence and Jira). This integration is designed specifically for Atlassian Cloud instances and does not support Atlassian Server or Data Center deployments.

Featured
Any OpenAI Compatible API Integrations

Any OpenAI Compatible API Integrations

Integrate Claude with Any OpenAI SDK Compatible Chat Completion API - OpenAI, Perplexity, Groq, xAI, PyroPrompts and more.

Featured