Memory Server
Provides knowledge graph functionality for managing entities, relations, and observations in memory with strict validation rules to maintain data consistency.
evangstav
README
Memory MCP Server
A Model Context Protocol (MCP) server that provides knowledge graph functionality for managing entities, relations, and observations in memory, with strict validation rules to maintain data consistency.
Installation
Install the server in Claude Desktop:
mcp install main.py -v MEMORY_FILE_PATH=/path/to/memory.jsonl
Data Validation Rules
Entity Names
- Must start with a lowercase letter
- Can contain lowercase letters, numbers, and hyphens
- Maximum length of 100 characters
- Must be unique within the graph
- Example valid names:
python-project
,meeting-notes-2024
,user-john
Entity Types
The following entity types are supported:
person
: Human entitiesconcept
: Abstract ideas or principlesproject
: Work initiatives or tasksdocument
: Any form of documentationtool
: Software tools or utilitiesorganization
: Companies or groupslocation
: Physical or virtual placesevent
: Time-bound occurrences
Observations
- Non-empty strings
- Maximum length of 500 characters
- Must be unique per entity
- Should be factual and objective statements
- Include timestamp when relevant
Relations
The following relation types are supported:
knows
: Person to person connectioncontains
: Parent/child relationshipuses
: Entity utilizing another entitycreated
: Authorship/creation relationshipbelongs-to
: Membership/ownershipdepends-on
: Dependency relationshiprelated-to
: Generic relationship
Additional relation rules:
- Both source and target entities must exist
- Self-referential relations not allowed
- No circular dependencies allowed
- Must use predefined relation types
Usage
The server provides tools for managing a knowledge graph:
Get Entity
result = await session.call_tool("get_entity", {
"entity_name": "example"
})
if not result.success:
if result.error_type == "NOT_FOUND":
print(f"Entity not found: {result.error}")
elif result.error_type == "VALIDATION_ERROR":
print(f"Invalid input: {result.error}")
else:
print(f"Error: {result.error}")
else:
entity = result.data
print(f"Found entity: {entity}")
Get Graph
result = await session.call_tool("get_graph", {})
if result.success:
graph = result.data
print(f"Graph data: {graph}")
else:
print(f"Error retrieving graph: {result.error}")
Create Entities
# Valid entity creation
entities = [
Entity(
name="python-project", # Lowercase with hyphens
entityType="project", # Must be a valid type
observations=["Started development on 2024-01-29"]
),
Entity(
name="john-doe",
entityType="person",
observations=["Software engineer", "Joined team in 2024"]
)
]
result = await session.call_tool("create_entities", {
"entities": entities
})
if not result.success:
if result.error_type == "VALIDATION_ERROR":
print(f"Invalid entity data: {result.error}")
else:
print(f"Error creating entities: {result.error}")
Add Observation
# Valid observation
result = await session.call_tool("add_observation", {
"entity": "python-project",
"observation": "Completed initial prototype" # Must be unique for entity
})
if not result.success:
if result.error_type == "NOT_FOUND":
print(f"Entity not found: {result.error}")
elif result.error_type == "VALIDATION_ERROR":
print(f"Invalid observation: {result.error}")
else:
print(f"Error adding observation: {result.error}")
Create Relation
# Valid relation
result = await session.call_tool("create_relation", {
"from_entity": "john-doe",
"to_entity": "python-project",
"relation_type": "created" # Must be a valid type
})
if not result.success:
if result.error_type == "NOT_FOUND":
print(f"Entity not found: {result.error}")
elif result.error_type == "VALIDATION_ERROR":
print(f"Invalid relation data: {result.error}")
else:
print(f"Error creating relation: {result.error}")
Search Memory
result = await session.call_tool("search_memory", {
"query": "most recent workout" # Supports natural language queries
})
if result.success:
if result.error_type == "NO_RESULTS":
print(f"No results found: {result.error}")
else:
results = result.data
print(f"Search results: {results}")
else:
print(f"Error searching memory: {result.error}")
The search functionality supports:
- Temporal queries (e.g., "most recent", "last", "latest")
- Activity queries (e.g., "workout", "exercise")
- General entity searches
- Fuzzy matching with 80% similarity threshold
- Weighted search across:
- Entity names (weight: 1.0)
- Entity types (weight: 0.8)
- Observations (weight: 0.6)
Delete Entities
result = await session.call_tool("delete_entities", {
"names": ["python-project", "john-doe"]
})
if not result.success:
if result.error_type == "NOT_FOUND":
print(f"Entity not found: {result.error}")
else:
print(f"Error deleting entities: {result.error}")
Delete Relation
result = await session.call_tool("delete_relation", {
"from_entity": "john-doe",
"to_entity": "python-project"
})
if not result.success:
if result.error_type == "NOT_FOUND":
print(f"Entity not found: {result.error}")
else:
print(f"Error deleting relation: {result.error}")
Flush Memory
result = await session.call_tool("flush_memory", {})
if not result.success:
print(f"Error flushing memory: {result.error}")
Error Types
The server uses the following error types:
NOT_FOUND
: Entity or resource not foundVALIDATION_ERROR
: Invalid input dataINTERNAL_ERROR
: Server-side errorALREADY_EXISTS
: Resource already existsINVALID_RELATION
: Invalid relation between entities
Response Models
All tools return typed responses using these models:
EntityResponse
class EntityResponse(BaseModel):
success: bool
data: Optional[Dict[str, Any]] = None
error: Optional[str] = None
error_type: Optional[str] = None
GraphResponse
class GraphResponse(BaseModel):
success: bool
data: Optional[Dict[str, Any]] = None
error: Optional[str] = None
error_type: Optional[str] = None
OperationResponse
class OperationResponse(BaseModel):
success: bool
error: Optional[str] = None
error_type: Optional[str] = None
Development
Running Tests
pytest tests/
Adding New Features
- Update validation rules in
validation.py
- Add tests in
tests/test_validation.py
- Implement changes in
knowledge_graph_manager.py
Recommended Servers

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
AIO-MCP Server
🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from
Persistent Knowledge Graph
An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.
Hyperbrowser MCP Server
Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to
BigQuery
This is a server that lets your LLMs (like Claude) talk directly to your BigQuery data! Think of it as a friendly translator that sits between your AI assistant and your database, making sure they can chat securely and efficiently.
Perplexity Chat MCP Server
MCP Server for the Perplexity API.
Web Research Server
A Model Context Protocol server that enables Claude to perform web research by integrating Google search, extracting webpage content, and capturing screenshots.
MySQL Server
Allows AI assistants to list tables, read data, and execute SQL queries through a controlled interface, making database exploration and analysis safer and more structured.
Aindreyway Codex Keeper
Serves as a guardian of development knowledge, providing AI assistants with curated access to latest documentation and best practices.