Memory MCP Worker
Provides cross-device access to a persistent knowledge graph via Cloudflare Workers, enabling memory storage and retrieval through both MCP protocol and REST API with full-text search capabilities.
README
Memory MCP Worker
Cloudflare Worker implementing MCP protocol for cross-device memory/knowledge graph access.
Features
- MCP Protocol Support: Works with Claude Code via HTTP transport
- REST API: Access from mobile apps, desktop apps, n8n workflows
- D1 Database: SQLite-based persistent storage
- Full-text Search: Search across all observations
Quick Start
1. Install Dependencies
npm install
2. Create D1 Database
# Create the database
wrangler d1 create memory-graph
# Copy the database_id from output to wrangler.toml
3. Run Migrations
# Local development
npm run db:migrate:local
# Production
npm run db:migrate
4. Deploy
npm run deploy
5. Set API Key Secret
# Generate an API key
openssl rand -base64 32 | tr -d '/+=' | head -c 32
# Add as secret
echo "YOUR_API_KEY" | npx wrangler secret put API_KEY
6. Configure Claude Code
Add to your ~/.claude/settings.json or .mcp.json:
{
"mcpServers": {
"memory-remote": {
"type": "http",
"url": "https://memory-mcp.45black-limited.workers.dev/mcp",
"headers": {
"X-API-Key": "YOUR_API_KEY"
}
}
}
}
Migrating from Local Memory
-
Export your local memory:
claude -p "Use mcp__memory__read_graph and output the raw JSON result" > scripts/local-memory.json -
Run migration:
npx ts-node scripts/migrate-local-memory.ts
API Endpoints
REST API (for apps)
| Endpoint | Method | Description |
|---|---|---|
/api/entities |
GET | List all entities |
/api/entities/:name |
GET | Get entity with observations |
/api/entities |
POST | Create entity |
/api/entities/:name/observations |
POST | Add observations |
/api/relations |
GET | List all relations |
/api/relations |
POST | Create relation |
/api/search?q= |
GET | Search entities and observations |
/api/graph |
GET | Get full graph |
/api/import |
POST | Bulk import |
MCP Protocol
| Endpoint | Method | Description |
|---|---|---|
/mcp |
POST | MCP JSON-RPC requests |
/mcp/sse |
GET | SSE connection for MCP |
MCP Tools Available
create_entities- Create new entitiescreate_relations- Create relations between entitiesadd_observations- Add observations to entitiesread_graph- Read entire knowledge graphsearch_nodes- Search by queryopen_nodes- Get specific nodes by namedelete_entities- Delete entitiesdelete_relations- Delete relations
Authentication
All /api/* and /mcp/* endpoints require authentication via API key.
Headers supported:
X-API-Key: YOUR_API_KEYAuthorization: Bearer YOUR_API_KEY
The health check endpoint (/) is public.
Mobile App Integration
Example fetch from a mobile app:
const API_KEY = 'YOUR_API_KEY';
const BASE_URL = 'https://memory-mcp.45black-limited.workers.dev';
const headers = {
'Content-Type': 'application/json',
'X-API-Key': API_KEY,
};
// Search for a project
const response = await fetch(`${BASE_URL}/api/search?q=Household%20Planner`, { headers });
const data = await response.json();
// Add an observation
await fetch(`${BASE_URL}/api/entities/Household%20Planner/observations`, {
method: 'POST',
headers,
body: JSON.stringify({
contents: ['Added new budget category feature']
})
});
n8n Integration
An n8n workflow is included for querying the Memory API via webhooks.
Setup
- Import
n8n-workflow-memory-api.jsoninto n8n - Create a "Header Auth" credential:
- Name:
Memory MCP API Key - Header Name:
X-API-Key - Header Value:
YOUR_API_KEY
- Name:
- Assign the credential to all three HTTP Request nodes
- Activate the workflow
Endpoints
Search - POST to /webhook/memory-search:
curl -X POST https://your-n8n-instance/webhook/memory-search \
-H "Content-Type: application/json" \
-d '{"query": "Household Planner"}'
Get Entity - POST to /webhook/memory-entity:
curl -X POST https://your-n8n-instance/webhook/memory-entity \
-H "Content-Type: application/json" \
-d '{"name": "Household Planner"}'
Get Full Graph - POST to /webhook/memory-graph:
curl -X POST https://your-n8n-instance/webhook/memory-graph \
-H "Content-Type: application/json" \
-d '{}'
Create Entity - POST to /webhook/memory-create:
curl -X POST https://your-n8n-instance/webhook/memory-create \
-H "Content-Type: application/json" \
-d '{"name": "My Project", "entityType": "Project", "observations": ["First observation"]}'
Add Observations - POST to /webhook/memory-observations:
curl -X POST https://your-n8n-instance/webhook/memory-observations \
-H "Content-Type: application/json" \
-d '{"name": "My Project", "contents": ["New observation 1", "New observation 2"]}'
Create Relation - POST to /webhook/memory-relations:
curl -X POST https://your-n8n-instance/webhook/memory-relations \
-H "Content-Type: application/json" \
-d '{"from": "Project A", "to": "Project B", "relationType": "depends_on"}'
Delete Entity - POST to /webhook/memory-delete:
curl -X POST https://your-n8n-instance/webhook/memory-delete \
-H "Content-Type: application/json" \
-d '{"name": "Entity Name"}'
Delete Relation - POST to /webhook/memory-delete-relation:
curl -X POST https://your-n8n-instance/webhook/memory-delete-relation \
-H "Content-Type: application/json" \
-d '{"from": "Entity A", "to": "Entity B", "relationType": "relation_type"}'
Development
# Start local dev server
npm run dev
# Typecheck
npm run typecheck
Architecture
┌─────────────────────────────────────────┐
│ Cloudflare Worker │
│ memory-mcp.45black.workers.dev │
├─────────────────────────────────────────┤
│ Hono Framework │
│ ├── /api/* → REST API │
│ └── /mcp → MCP Protocol │
├─────────────────────────────────────────┤
│ Cloudflare D1 (SQLite) │
│ ├── entities │
│ ├── observations │
│ ├── relations │
│ └── observations_fts (full-text) │
└─────────────────────────────────────────┘
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.