Memory Bank MCP
An MCP server that enables persistent memory, structured thinking sessions, and project-based knowledge management for Claude. It includes specialized coding tools for package discovery and reinvention prevention by validating code against existing libraries and APIs.
README
๐ง Memory Bank MCP
A Model Context Protocol (MCP) server for Claude Code that enables persistent memory, structured thinking, team collaboration, and project-based knowledge management โ with full export, revision, and analysis capabilities. Now featuring comprehensive coding integration to prevent package reinvention and enforce existing API usage.
๐ Features
๐ง Core Memory Management
- Session-Based Thinking: Start with a problem and track related insights
- Persistent Storage: Store and retrieve memories across sessions
- Collections: Group related memories with clear purposes
- Revision & Dependencies: Refine ideas, track changes and links
๐ป Coding Integration (NEW)
- Package Discovery: Auto-scan installed packages and extract API signatures
- Reinvention Prevention: Validate code against existing libraries before implementation
- Code Pattern Storage: Store and retrieve proven code templates and examples
- Coding Sessions: Specialized session types for development workflows
- Validation Gates: Catch potential issues and suggest existing solutions
๐ฆ Project & Export System
- Export to Markdown/JSON: Full or filtered memory exports
- Project Structure Generation: Standardized folders for teams
- Project Indexing: Maintain status updates and documentation
- Context Loading: Load ongoing work for seamless continuation
๐ Search & Analytics
- Tag-Based Search: Find insights by topics or keywords
- Importance Scores: Prioritize content using confidence metrics
- Session Analysis: Detect contradictions, gaps, and themes
โก Quick Start
git clone https://github.com/spideynolove/memory-bank-mcp
cd memory-bank-mcp
uv sync
uv run main.py
Requires Python 3.10+ and uv
๐ Installation Options
- Direct run:
uv run main.py - Global install:
uv tool install . - Development mode:
uv pip install -e .
๐งช Test
uv run -c "import main; print('Installation successful')"
๐ง Session Workflow (API Example)
Basic Memory Session
create_memory_session(
problem="Implement user auth",
success_criteria="Secure + scalable",
constraints="Use existing DB"
)
store_memory(
content="Use JWT with refresh",
tags="auth,jwt",
importance=0.9
)
analyze_memories()
export_session_to_file("auth_session.md")
Coding Session with Validation
# Start a coding-specific session
create_memory_session(
problem="Build HTTP client for API integration",
success_criteria="Efficient, maintainable, using existing libraries",
constraints="Must handle auth, retries, rate limiting",
session_type="coding_session"
)
# Discover what packages are already available
discover_packages()
# Check if functionality already exists before coding
prevent_reinvention_check("HTTP client for REST APIs")
# Returns: Found existing APIs: requests.get(), urllib3.request(), etc.
# Validate code before implementation
validate_package_usage("""
def make_request(url):
import urllib.request
return urllib.request.urlopen(url).read()
""")
# Returns: Warning - Consider using requests library
# Store proven patterns for reuse
store_codebase_pattern(
pattern_type="api_usage",
code_snippet="import requests\nresponse = requests.get(url, headers=headers)",
description="Standard HTTP GET with auth headers",
language="python"
)
โ ๏ธ Must start with
create_memory_session()before storing anything.
๐งฉ Session Tools
Core Memory Tools
| Tool | Description |
|---|---|
create_memory_session() |
Start a new thinking session (now supports session_type) |
store_memory() |
Save insights with tags and confidence (now supports code_snippet) |
revise_memory() |
Update previous memories |
create_collection() |
Group insights |
merge_collection() |
Combine collections |
analyze_memories() |
Run quality checks |
export_session_to_file() |
Export full sessions |
export_memories_to_file() |
Export filtered memories |
load_project_context() |
Resume prior sessions |
update_project_index() |
Document team progress |
๐ป Coding Integration Tools (NEW)
| Tool | Description |
|---|---|
discover_packages() |
Auto-scan installed packages and extract APIs |
validate_package_usage() |
Validate code against existing packages |
explore_existing_apis() |
Find existing APIs for needed functionality |
prevent_reinvention_check() |
Comprehensive reinvention prevention warning |
store_codebase_pattern() |
Store code patterns with metadata |
load_codebase_context() |
Load project structure into memory |
Enhanced Tools
create_memory_session(): Now acceptssession_typeparameter forcoding_session,debugging_session,architecture_sessionstore_memory(): Now acceptscode_snippet,language,pattern_typeparameters for code integration
๐ป Coding Session Types & Workflows
Session Types
coding_session: General development work with package discovery and validationdebugging_session: Problem-solving focused with enhanced error pattern storagearchitecture_session: System design with emphasis on integration patterns
Validation Workflow
# 1. Start coding session
create_memory_session("Build user service", "Efficient API", session_type="coding_session")
# 2. Discover available packages
discover_packages()
# Scans environment and stores: requests, fastapi, pydantic, etc.
# 3. Check for existing solutions before coding
prevent_reinvention_check("HTTP server framework")
# โ ๏ธ POTENTIAL REINVENTION DETECTED โ ๏ธ
# Found existing APIs: fastapi.FastAPI(), flask.Flask(), etc.
# 4. Validate specific code patterns
validate_package_usage("""
class CustomHTTPServer:
def __init__(self, port):
self.port = port
def start(self):
# custom server implementation
pass
""")
# Warning: Consider using FastAPI or Flask instead
# 5. Store proven patterns for team reuse
store_codebase_pattern(
pattern_type="api_endpoint",
code_snippet="""
@app.get("/users/{user_id}")
async def get_user(user_id: int):
return {"user_id": user_id}
""",
description="Standard FastAPI endpoint pattern",
language="python",
tags="api,fastapi,endpoint"
)
๐ MCP Resources for Coding
Access coding data through these resources:
| Resource | Description |
|---|---|
codebase://packages |
View discovered packages in session |
codebase://patterns |
View stored code patterns |
codebase://validation-checks |
View validation check history |
Example Usage
# View discovered packages
# Resource: codebase://packages
{
"requests": [
{"signature": "requests.get(url, **kwargs)", "usage_example": "requests.get('https://api.example.com')"},
{"signature": "requests.post(url, data=None, json=None, **kwargs)", "usage_example": "requests.post(url, json={'key': 'value'})"}
],
"fastapi": [
{"signature": "fastapi.FastAPI()", "usage_example": "app = FastAPI()"}
]
}
# View code patterns
# Resource: codebase://patterns
[
{
"id": "abc123",
"type": "api_endpoint",
"description": "Standard FastAPI endpoint",
"language": "python",
"tags": ["api", "fastapi"],
"code_snippet": "@app.get('/users/{user_id}')\nasync def get_user(user_id: int)..."
}
]
๐ Project Structure
memory-bank/
โโโ thinking_sessions/
โโโ domain_knowledge/
โโโ implementation_log/
โโโ exports/
โโโ project_knowledge_index.md
โโโ README.md
Initialize with:
create_project_structure("My Project")
๐งโ๐คโ๐ง Collaboration Patterns
Developer A - Research Phase
create_memory_session("Research auth libs", "Evaluate options", session_type="coding_session")
discover_packages() # Find available auth libraries
prevent_reinvention_check("JWT authentication")
store_memory("Use FastAPI JWT plugin", code_snippet="from fastapi_jwt import JWT", language="python")
export_session_to_file("thinking_sessions/research_alice.md")
Developer B - Implementation Phase
load_project_context("memory-bank")
create_memory_session("Design auth flow", "Complete plan", session_type="architecture_session")
# Load existing patterns from team
# Resource: codebase://patterns shows Alice's JWT pattern
validate_package_usage("""
def custom_jwt_encode(payload):
import base64
return base64.b64encode(json.dumps(payload).encode())
""")
# Warning: Consider using existing JWT libraries
export_memories_to_file("domain_knowledge/auth_decisions.json")
Developer C - Debugging Phase
create_memory_session("Fix auth token expiry", "Resolve production issue", session_type="debugging_session")
explore_existing_apis("JWT token refresh")
store_codebase_pattern("debugging", "Token expiry logs", "Check exp claim in JWT payload")
๐ฅ Error Recovery
try:
analyze_memories()
except:
create_memory_session("Recovery", "Rebuild context")
Safe export:
def safe_export(path):
try:
export_session_to_file(path)
except:
export_session_to_file(path.replace(".md", ".json"))
๐งโ๐ผ Role-Based Usage
| Role | Actions |
|---|---|
| Lead | create_project_structure(), update_project_index(), discover_packages() |
| Developer | create_memory_session(), validate_package_usage(), store_codebase_pattern() |
| New Teammate | load_project_context(), explore_existing_apis(), prevent_reinvention_check() |
๐๏ธ Database Schema Extensions
The coding integration adds 4 new tables to the SQLite database:
New Tables
-- Package APIs discovered in sessions
CREATE TABLE package_apis (
id TEXT PRIMARY KEY,
session_id TEXT NOT NULL,
package_name TEXT NOT NULL, -- e.g., "requests"
api_signature TEXT NOT NULL, -- e.g., "requests.get(url, **kwargs)"
usage_example TEXT, -- e.g., "requests.get('https://api.com')"
documentation TEXT, -- API documentation excerpt
discovered_at TIMESTAMP,
usage_count INTEGER DEFAULT 0
);
-- Code patterns stored for reuse
CREATE TABLE codebase_patterns (
id TEXT PRIMARY KEY,
session_id TEXT NOT NULL,
pattern_type TEXT NOT NULL, -- 'api_usage', 'integration', 'structure'
code_snippet TEXT NOT NULL, -- Actual code
description TEXT, -- Human description
language TEXT, -- 'python', 'javascript', etc.
file_path TEXT, -- Original file path if applicable
tags_json TEXT DEFAULT '[]', -- JSON array of tags
created_at TIMESTAMP,
updated_at TIMESTAMP
);
-- Coding session metadata
CREATE TABLE coding_sessions (
session_id TEXT PRIMARY KEY,
session_type TEXT NOT NULL, -- 'coding_session', 'debugging_session', 'architecture_session'
project_path TEXT, -- Project directory
language TEXT, -- Primary language
framework TEXT, -- Primary framework
packages_discovered INTEGER, -- Count of packages found
patterns_stored INTEGER, -- Count of patterns stored
validation_checks INTEGER -- Count of validations run
);
-- Validation check results
CREATE TABLE validation_checks (
id TEXT PRIMARY KEY,
session_id TEXT NOT NULL,
check_type TEXT NOT NULL, -- 'package_usage', 'reinvention_prevention'
target_code TEXT NOT NULL, -- Code that was validated
result TEXT NOT NULL, -- 'passed', 'failed', 'warning'
message TEXT, -- Human-readable result
suggestions_json TEXT, -- JSON array of suggestions
created_at TIMESTAMP
);
Migration & Compatibility
- Automatic Migration: New tables created automatically when first used
- Backwards Compatible: Existing sessions continue to work unchanged
- Schema Evolution: Database adapts seamlessly to new features
- Data Isolation: Coding features are project-specific via session isolation
๐ Best Practices
General Memory Management
- Always start with
create_memory_session() - Use specific tags for search/export
- Run
analyze_memories()before final export - Use collections for structure
- Track everything under version control
Coding Integration Best Practices
- Start coding sessions with package discovery:
discover_packages()first - Check for reinvention before coding: Use
prevent_reinvention_check()early - Validate code patterns: Run
validate_package_usage()before implementation - Store proven patterns: Use
store_codebase_pattern()for team knowledge sharing - Load project context: Always
load_codebase_context()when joining existing projects - Use appropriate session types:
coding_sessionfor general developmentdebugging_sessionfor problem-solvingarchitecture_sessionfor system design
Team Workflow
# 1. Project Lead: Set up discovery
create_memory_session("Project kickoff", "Team alignment", session_type="architecture_session")
discover_packages() # Establish baseline
load_codebase_context() # Scan existing code
# 2. Developers: Check before coding
prevent_reinvention_check("user authentication") # Before starting work
validate_package_usage(proposed_code) # Before committing
# 3. Knowledge Sharing: Store patterns
store_codebase_pattern("error_handling", error_code, "Team standard error pattern")
export_session_to_file("team_standards.md")
๐งฉ Claude Desktop Integration
{
"mcpServers": {
"memory-bank": {
"command": "uv",
"args": ["run", "/path/to/memory-bank-mcp/main.py"]
}
}
}
๐ License
MIT License
๐ Support
- Open an issue on GitHub
- Read the usage examples above
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.