Memex

Memex

Enables searching and retrieving Claude Code conversation history that would otherwise expire after 30 days. Supports full-text search, semantic search, and session management with automatic backup of all conversations.

Category
Visit Server

README

English | 中文

Memex

A session history management system for Claude Code. Never lose your conversations again.

Why Memex?

Claude Code's local conversation data expires after 30 days, causing:

  • Loss of important technical decision records
  • Difficulty searching historical conversations
  • Knowledge cannot be accumulated and reused

Memex solves these problems:

  • ✅ Automatic backup of all Claude Code sessions
  • ✅ Powerful full-text and semantic search
  • ✅ MCP protocol support for searching history directly in Claude
  • ✅ Web UI for browsing and managing sessions

Features

Data Collection & Backup

  • Automatically scans all sessions under ~/.claude/projects/
  • Parses JSONL format conversation content
  • Stores in SQLite database
  • Supports daily incremental backups

Search Capabilities

  • Full-text Search: Fast keyword search based on SQLite FTS5
  • Semantic Search: Semantic understanding using Ollama + LanceDB
  • Hybrid Retrieval: RRF fusion ranking combining keyword and semantic relevance
  • Advanced Filtering: Filter by project, time range, Session ID prefix

MCP Integration

Search historical conversations in Claude Code via MCP protocol:

  • search_history - Search historical conversations
  • get_session - Get session details (supports pagination and in-session search)
  • get_recent_sessions - Get recent sessions
  • list_projects - List all projects

Web UI

  • Cyberpunk-style interface
  • Project list and session browsing
  • Quick lookup by Session ID prefix
  • Supports full-text/semantic/hybrid search

Tech Stack

  • Backend: NestJS (DDD architecture)
  • Database: SQLite + FTS5 (full-text search)
  • Vector Store: LanceDB
  • LLM Runtime: Ollama (local)
  • Frontend: Vue 3
  • Communication: HTTP + JSON-RPC (MCP)

Quick Start (Docker)

The fastest way to get started - no Node.js or build tools required.

# One command to start
docker run -d \
  --name memex \
  -p 3000:3000 \
  -v ~/.claude/projects:/claude-sessions:ro \
  -v memex-data:/data \
  ghcr.io/vimo-ai/memex:latest

# Or use docker-compose
curl -sL https://raw.githubusercontent.com/vimo-ai/memex/main/docker-compose.yml -o docker-compose.yml
docker-compose up -d

Then visit http://localhost:3000

What's included

  • Web UI for browsing sessions
  • Full-text search (FTS5)
  • MCP endpoint at /api/mcp
  • Auto-import from ~/.claude/projects/

Optional: Enable Semantic Search

For semantic search and RAG, you need Ollama running on your host:

# Install Ollama and pull models
ollama pull bge-m3
ollama pull qwen3:8b

# Run Memex with Ollama access
docker run -d \
  --name memex \
  -p 3000:3000 \
  -v ~/.claude/projects:/claude-sessions:ro \
  -v memex-data:/data \
  -e OLLAMA_API=http://host.docker.internal:11434/api \
  ghcr.io/vimo-ai/memex:latest

Installation (From Source)

If you want to build from source or do development, follow these steps.

Prerequisites

  1. Node.js >= 18
  2. pnpm (recommended)
  3. Ollama (required for semantic search and RAG)

Ollama Models

Model Size Purpose Required
bge-m3 1.2 GB Embedding (1024 dim) Yes, for semantic search
qwen3:8b 5.2 GB Chat / RAG Q&A Yes, for Ask AI feature
# Install Ollama
curl -fsSL https://ollama.com/install.sh | sh

# Pull required models
ollama pull bge-m3      # Embedding model
ollama pull qwen3:8b    # Chat model for RAG

Note: Without Ollama models, full-text search still works. Semantic search and RAG require the models above.

Install Project

# Clone project
git clone <repository-url>
cd memex

# Install dependencies
pnpm install

# Web UI dependencies
cd web
pnpm install
cd ..

Configuration

Copy and edit the configuration file:

cp .env.example .env

Main configuration options:

# Server port
PORT=10013

# Data storage directory
MEMEX_DATA_DIR=~/memex-data

# Backup directory
MEMEX_BACKUP_DIR=~/memex-data/backups

# Claude Code data source path
CLAUDE_PROJECTS_PATH=~/.claude/projects

# Ollama API address
OLLAMA_API=http://localhost:11434/api

# Embedding model
EMBEDDING_MODEL=bge-m3

# Chat model for RAG
CHAT_MODEL=qwen3:8b

Running

Development Mode

# Start backend
pnpm dev

# Start frontend (new terminal)
cd web
pnpm dev

Production Mode

# Build backend
pnpm build

# Build frontend
cd web
pnpm build
cd ..

# Start service
pnpm start:prod

MCP Configuration

Memex provides MCP service via HTTP protocol with simple configuration.

Option 1: mcp-router Configuration (Recommended)

Edit mcp-router configuration file:

{
  "mcpServers": {
    "memex": {
      "type": "http",
      "url": "http://127.0.0.1:10013/api/mcp"
    }
  }
}

Option 2: Claude Code Direct Configuration

Add to Claude Code's MCP settings:

{
  "mcpServers": {
    "memex": {
      "type": "http",
      "url": "http://127.0.0.1:10013/api/mcp"
    }
  }
}

Verify MCP Connection

After starting Claude Code, verify with:

Search for my recent discussions about DDD architecture

If MCP is configured correctly, Claude will call the memex/search_history tool.

API Endpoints

Project Management

  • GET /api/projects - Get all projects list
  • GET /api/projects/:id - Get project details (including session list)

Session Management

  • GET /api/sessions/:id - Get session details (full conversation content)
  • GET /api/sessions/search?idPrefix=xxx - Search by Session ID prefix

Search

  • GET /api/search?q=xxx&projectId=yyy - Full-text search

    • Query parameters:
      • q: Search keywords
      • projectId: Project filter (optional)
      • startDate: Start date (optional)
      • endDate: End date (optional)
      • limit: Result limit, default 20
  • GET /api/search/semantic?q=xxx&mode=hybrid - Semantic search

    • Query parameters:
      • q: Search content
      • mode: Search mode
        • semantic: Pure semantic search
        • hybrid: Hybrid search (keyword + semantic)
      • projectId: Project filter (optional)
      • limit: Result limit, default 10

RAG Q&A

  • POST /api/ask - Ask questions based on history
    • Request body:
      • question: The question to ask
      • cwd: Current working directory for project filtering (optional)
      • contextWindow: Context messages before/after, default 3 (optional)
      • maxSources: Max source references, default 5 (optional)
    • Response: { answer, sources, model, tokensUsed }

MCP

  • POST /api/mcp - MCP JSON-RPC endpoint
  • GET /api/mcp/info - Get MCP tools information

Usage Examples

Web UI

Visit http://localhost:10013 to use the web interface.

Main features:

  • Browse all projects and sessions
  • Quick lookup by Session ID prefix
  • Full-text search conversation content
  • Semantic search related discussions
  • Filter by project and time

Command Line Search

# Full-text search
curl "http://localhost:10013/api/search?q=authentication"

# Semantic search
curl "http://localhost:10013/api/search/semantic?q=how+to+design+domain+models&mode=hybrid"

# Search by project
curl "http://localhost:10013/api/search?q=bug&projectId=xxx"

MCP Usage

Ask directly in Claude Code:

Search for previous discussions about NestJS dependency injection

Find sessions from the last week and see what we worked on

Get the full session content about database design

Data Directory Structure

~/memex-data/
├── memex.db              # SQLite database
├── vectors/              # LanceDB vector storage
│   └── messages/
└── backups/              # Backup files
    └── memex-2025-01-15.db

FAQ

Q: How to trigger initial data import?

A: The service automatically scans ~/.claude/projects/ and imports all sessions on startup. You can also trigger manually via API:

curl -X POST http://localhost:10013/api/backup

Q: Semantic search not working?

A: Ensure:

  1. Ollama service is running: ollama serve
  2. Model is downloaded: ollama pull bge-m3
  3. OLLAMA_API is configured correctly in .env

Q: How to clear and rebuild index?

A: Delete the data directory and restart the service:

rm -rf ~/memex-data
pnpm start

Q: MCP connection failed?

A: Check:

  1. Memex service is running at http://localhost:10013
  2. MCP configuration path is correct
  3. Node.js version is >= 18

Development

Project Structure

memex/
├── src/
│   ├── context/                 # DDD contexts
│   │   └── brain/              # Core context
│   │       ├── api/            # API layer
│   │       ├── application/    # Application services
│   │       ├── domain/         # Domain models
│   │       └── infrastructure/ # Infrastructure
│   └── main.ts                 # Application entry
├── web/                        # Vue frontend
└── DESIGN.md                   # Architecture design document

Running Tests

pnpm test

Roadmap

  • [x] Phase 0: Data collection and backup
  • [x] Phase 1: SQLite + FTS5 full-text search
  • [x] Phase 2: Semantic search (Ollama + LanceDB)
  • [x] Phase 3: MCP integration
  • [x] Web UI
  • [x] Phase 4: RAG Q&A
  • Phase 5: Knowledge distillation (Not planned - RAG already covers most use cases)

Possible Future Enhancements

  • Session export (Markdown/PDF)
  • Bookmark/tagging system
  • Claude Hooks integration (near real-time indexing)

License

MIT

Acknowledgments

Thanks to Claude Code for providing such an excellent development experience.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured