Mem0 MCP Server

Mem0 MCP Server

Enables AI applications to add, search, update, and delete long-term memories using the Mem0 Memory API, allowing agents to persistently remember user preferences, conversation history, and contextual information across sessions.

Category
Visit Server

README

Mem0 MCP Server

PyPI version License: Apache 2.0

mem0-mcp-server wraps the official Mem0 Memory API as a Model Context Protocol (MCP) server so any MCP-compatible client (Claude Desktop, Cursor, custom agents) can add, search, update, and delete long-term memories.

Tools

The server exposes the following tools to your LLM:

Tool Description
add_memory Save text or conversation history (or explicit message objects) for a user/agent.
search_memories Semantic search across existing memories (filters + limit supported).
get_memories List memories with structured filters and pagination.
get_memory Retrieve one memory by its memory_id.
update_memory Overwrite a memory's text once the user confirms the memory_id.
delete_memory Delete a single memory by memory_id.
delete_all_memories Bulk delete all memories in the confirmed scope (user/agent/app/run).
delete_entities Delete a user/agent/app/run entity (and its memories).
list_entities Enumerate users/agents/apps/runs stored in Mem0.

All responses are JSON strings returned directly from the Mem0 API.

Usage Options

There are three ways to use the Mem0 MCP Server:

  1. Python Package - Install and run locally using uvx with any MCP client
  2. Docker - Containerized deployment that creates an /mcp HTTP endpoint
  3. Smithery - Remote hosted service for managed deployments

Quick Start

Installation

uv pip install mem0-mcp-server

Or with pip:

pip install mem0-mcp-server

Client Configuration

Add this configuration to your MCP client:

{
  "mcpServers": {
    "mem0": {
      "command": "uvx",
      "args": ["mem0-mcp-server"],
      "env": {
        "MEM0_API_KEY": "sk_mem0_...",
        "MEM0_DEFAULT_USER_ID": "your-handle"
      }
    }
  }
}

Test with the Python Agent

<details> <summary><strong>Click to expand: Test with the Python Agent</strong></summary>

To test the server immediately, use the included Pydantic AI agent:

# Install the package
pip install mem0-mcp-server
# Or with uv
uv pip install mem0-mcp-server

# Set your API keys
export MEM0_API_KEY="sk_mem0_..."
export OPENAI_API_KEY="sk-openai-..."

# Clone and test with the agent
git clone https://github.com/mem0ai/mem0-mcp-server.git
cd mem0-mcp-server
python example/pydantic_ai_repl.py

Using different server configurations:

# Use with Docker container
export MEM0_MCP_CONFIG_PATH=example/docker-config.json
export MEM0_MCP_CONFIG_SERVER=mem0-docker
python example/pydantic_ai_repl.py

# Use with Smithery remote server
export MEM0_MCP_CONFIG_PATH=example/config-smithery.json
export MEM0_MCP_CONFIG_SERVER=mem0-memory-mcp
python example/pydantic_ai_repl.py

</details>

What You Can Do

The Mem0 MCP server enables powerful memory capabilities for your AI applications:

  • Remember that I'm allergic to peanuts and shellfish - Add new health information to memory
  • Store these trial parameters: 200 participants, double-blind, placebo-controlled study - Save research data
  • What do you know about my dietary preferences? - Search and retrieve all food-related memories
  • Update my project status: the mobile app is now 80% complete - Modify existing memory with new info
  • Delete all memories from 2023, I need a fresh start - Bulk remove outdated memories
  • Show me everything I've saved about the Phoenix project - List all memories for a specific topic

Configuration

Environment Variables

  • MEM0_API_KEY (required) – Mem0 platform API key.
  • MEM0_DEFAULT_USER_ID (optional) – default user_id injected into filters and write requests (defaults to mem0-mcp).
  • MEM0_MCP_AGENT_MODEL (optional) – default LLM for the bundled agent example (defaults to openai:gpt-4o-mini).

Advanced Setup

<details> <summary><strong>Click to expand: Docker, Smithery, and Development</strong></summary>

Docker Deployment

To run with Docker:

  1. Build the image:

    docker build -t mem0-mcp-server .
    
  2. Run the container:

    docker run --rm -d \
      --name mem0-mcp \
      -e MEM0_API_KEY=sk_mem0_... \
      -p 8080:8081 \
      mem0-mcp-server
    
  3. Monitor the container:

    # View logs
    docker logs -f mem0-mcp
    
    # Check status
    docker ps
    

Running with Smithery Remote Server

To connect to a Smithery-hosted server:

  1. Install with Smithery support:

    pip install "mem0-mcp-server[smithery]"
    
  2. Configure MCP client with Smithery:

    {
      "mcpServers": {
        "mem0-memory-mcp": {
          "command": "npx",
          "args": [
            "-y",
            "@smithery/cli@latest",
            "run",
            "@mem0ai/mem0-memory-mcp",
            "--key",
            "your-smithery-key",
            "--profile",
            "your-profile-name"
          ],
          "env": {
            "MEM0_API_KEY": "sk_mem0_..."
          }
        }
      }
    }
    

Development Setup

Clone and run from source:

git clone https://github.com/mem0ai/mem0-mcp-server.git
cd mem0-mcp-server
pip install -e ".[dev]"

# Run locally
mem0-mcp-server

# Or with uv
uv sync
uv run mem0-mcp-server

</details>

License

Apache License 2.0

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured