Mem0 MCP Server

Mem0 MCP Server

Provides long-term memory capabilities for MCP clients by wrapping the Mem0 API, enabling semantic search, storage, retrieval, and management of conversation memories across users and agents.

Category
Visit Server

README

Mem0 MCP Server

PyPI version License: MIT

mem0-mcp-server wraps the official Mem0 Memory API as a Model Context Protocol (MCP) server so any MCP-compatible client (Claude Desktop, Cursor, custom agents) can add, search, update, and delete long-term memories.

Tools

The server exposes the following tools to your LLM:

Tool Description
add_memory Save text or conversation history (or explicit message objects) for a user/agent.
search_memories Semantic search across existing memories (filters + limit supported).
get_memories List memories with structured filters and pagination.
get_memory Retrieve one memory by its memory_id.
update_memory Overwrite a memory’s text once the user confirms the memory_id.
delete_memory Delete a single memory by memory_id.
delete_all_memories Bulk delete all memories in the confirmed scope (user/agent/app/run).
delete_entities Delete a user/agent/app/run entity (and its memories).
list_entities Enumerate users/agents/apps/runs stored in Mem0.

All responses are JSON strings returned directly from the Mem0 API.

Ways to Run

You can run this server in three modes depending on your setup:

  • Local Stdio (Recommended): Best for Claude Desktop, Cursor, or local development. No server port management needed.
  • Smithery: Best for deploying as a hosted HTTP endpoint or using the Smithery platform.
  • Docker: Best for containerized deployments where you need an HTTP endpoint.

How to Connect

Claude Desktop & Cursor (Stdio)

The easiest way to use Mem0 is by letting uvx handle the installation. Add this configuration to your claude_desktop_config.json or Cursor MCP settings:

{
  "mcpServers": {
    "mem0": {
      "command": "uvx",
      "args": ["mem0-mcp-server"],
      "env": {
        "MEM0_API_KEY": "sk_mem0_...",
        "MEM0_DEFAULT_USER_ID": "your-handle"
      }
    }
  }
}

Manual Installation (CLI)

If you prefer installing the package yourself:

pip install mem0-mcp-server

Then run it directly:

export MEM0_API_KEY="sk_mem0_..."
mem0-mcp-server

Agent Example

This repository includes a standalone agent (powered by Pydantic AI) to test the server interactively.

# Clone repo & install deps
git clone https://github.com/mem0-ai/mem0-mcp-server.git
cd mem0-mcp-server
pip install -e ".[smithery]"

# Run the agent REPL
export MEM0_API_KEY="sk_mem0_..."
export OPENAI_API_KEY="sk-openai-..."
python example/pydantic_ai_repl.py

This launches "Mem0Guide". Try prompts like "search memories for favorite food" to test your API key and memory storage.

Configuration

Environment Variables

  • MEM0_API_KEY (required) – Mem0 platform API key.
  • MEM0_DEFAULT_USER_ID (optional) – default user_id injected into filters and write requests (defaults to mem0-mcp).
  • MEM0_MCP_AGENT_MODEL (optional) – default LLM for the bundled agent example.

Config Files

For advanced usage (like switching the agent example to use Docker), this repo includes standard MCP config files in the example/ directory:

  • example/config.json: Local Stdio (default)
  • example/docker-config.json: Docker HTTP

Switch configurations for the agent REPL by setting MEM0_MCP_CONFIG_PATH.

Detailed Setup Guides

<details> <summary><strong>Click to expand: Smithery, Docker, and Troubleshooting</strong></summary>

1. Smithery HTTP

To run the HTTP transport with Smithery:

  1. pip install -e ".[smithery]" (or pip install "mem0-mcp-server[smithery]").
  2. Ensure MEM0_API_KEY (and optional MEM0_DEFAULT_USER_ID) are exported.
  3. uv run smithery dev for a local endpoint (http://127.0.0.1:8081/mcp).
  4. Optional: uv run smithery playground to open an ngrok tunnel + Smithery web UI.
  5. Testing: Create a config copying example/config.json but changing the entry to { "type": "http", "url": "http://127.0.0.1:8081/mcp" }, then point MEM0_MCP_CONFIG_PATH to it before running the agent REPL.
  6. Hosted deploy: Push to GitHub, connect at smithery.ai, click Deploy.

2. Docker HTTP

To containerize the server:

  1. Build the image:
    docker build -t mem0-mcp-server .
    
  2. Run the container (ensure env vars are passed):
    docker run --rm -e MEM0_API_KEY=sk_mem0_... -p 8081:8081 mem0-mcp-server
    
  3. Connect clients using example/docker-config.json:
    export MEM0_MCP_CONFIG_PATH="$PWD/example/docker-config.json"
    python example/pydantic_ai_repl.py
    

Troubleshooting Docker:

  • The container must be running before HTTP clients connect.
  • Ensure MEM0_API_KEY is passed via -e.
  • If clients can't connect, check that port 8081 is forwarded correctly (-p 8081:8081) and that the config URL is reachable.

3. FAQ / Troubleshooting

  • RuntimeWarning: 'mem0_mcp_server.server' found in sys.modules…: Harmless warning when running the Pydantic AI REPL.
  • session_config not found in request scope: Expected when running outside Smithery; the server falls back to environment variables.
  • Smithery CLI "server reference not found": Ensure [tool.smithery] server = "mem0_mcp_server.server:create_server" is present in pyproject.toml.

</details>

Development

uv sync --python 3.11                  # optional, installs dev extras and lockfile
uv run --from . mem0-mcp-server        # run local checkout via uvx

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured