
Meilisearch MCP Server
Enables AI assistants to interact with Meilisearch via the Model Context Protocol, allowing comprehensive index, document, and search management through a standardized interface.
Tools
list-indexes
List all indexes in the Meilisearch instance
get-index
Get information about a specific Meilisearch index
create-index
Create a new Meilisearch index
update-index
Update a Meilisearch index (currently only supports updating the primary key)
delete-index
Delete a Meilisearch index
swap-indexes
Swap two or more indexes in Meilisearch
get-documents
Get documents from a Meilisearch index
get-document
Get a document by its ID from a Meilisearch index
add-documents
Add documents to a Meilisearch index
update-documents
Update documents in a Meilisearch index
delete-documents
Delete multiple documents by their IDs from a Meilisearch index
delete-document
Delete a document by its ID from a Meilisearch index
delete-all-documents
Delete all documents in a Meilisearch index
search
Search for documents in a Meilisearch index
multi-search
Perform multiple searches in one request
facet-search
Search for facet values matching specific criteria
get-settings
Get all settings for a Meilisearch index
update-settings
Update settings for a Meilisearch index
reset-settings
Reset all settings for a Meilisearch index to their default values
get-searchable-attributes
Get the searchable attributes setting
get-displayed-attributes
Get the displayed attributes setting
get-filterable-attributes
Get the filterable attributes setting
get-sortable-attributes
Get the sortable attributes setting
get-ranking-rules
Get the ranking rules setting
get-stop-words
Get the stop words setting
get-synonyms
Get the synonyms setting
get-distinct-attribute
Get the distinct attribute setting
get-typo-tolerance
Get the typo tolerance setting
get-faceting
Get the faceting setting
get-pagination
Get the pagination setting
update-searchable-attributes
Update the searchable attributes setting
update-displayed-attributes
Update the displayed attributes setting
update-filterable-attributes
Update the filterable attributes setting
update-sortable-attributes
Update the sortable attributes setting
update-ranking-rules
Update the ranking rules setting
update-stop-words
Update the stop words setting
update-synonyms
Update the synonyms setting
update-distinct-attribute
Update the distinct attribute setting
update-typo-tolerance
Update the typo tolerance setting
update-faceting
Update the faceting setting
update-pagination
Update the pagination setting
reset-searchable-attributes
Reset the searchable attributes setting to its default value
reset-displayed-attributes
Reset the displayed attributes setting to its default value
reset-filterable-attributes
Reset the filterable attributes setting to its default value
reset-sortable-attributes
Reset the sortable attributes setting to its default value
reset-distinct-attribute
Reset the distinct attribute setting to its default value
reset-typo-tolerance
Reset the typo tolerance setting to its default value
reset-faceting
Reset the faceting setting to its default value
reset-ranking-rules
Reset the ranking rules setting to its default value
reset-stop-words
Reset the stop words setting to its default value
reset-synonyms
Reset the synonyms setting to its default value
reset-pagination
Reset the pagination setting to its default value
enable-vector-search
Enable the vector search experimental feature in Meilisearch
get-experimental-features
Get the status of experimental features in Meilisearch
update-embedders
Configure embedders for vector search
get-embedders
Get the embedders configuration for an index
reset-embedders
Reset the embedders configuration for an index
vector-search
Perform a vector search in a Meilisearch index
health
Check if the Meilisearch server is healthy
version
Get the version information of the Meilisearch server
info
Get the system information of the Meilisearch server
stats
Get statistics about all indexes or a specific index
get-tasks
Get information about tasks with optional filtering
delete-tasks
Delete tasks based on provided filters
list-tasks
List tasks with optional filtering
get-task
Get information about a specific task
cancel-tasks
Cancel tasks based on provided filters
wait-for-task
Wait for a specific task to complete
README
Meilisearch MCP Server
A Model Context Protocol (MCP) server implementation for Meilisearch, enabling AI assistants to interact with Meilisearch through a standardized interface.
Features
- Index Management: Create, update, and delete indexes
- Document Management: Add, update, and delete documents
- Search Capabilities: Perform searches with various parameters and filters
- Settings Management: Configure index settings
- Task Management: Monitor and manage asynchronous tasks
- System Operations: Health checks, version information, and statistics
- Vector Search: Experimental vector search capabilities
Installation
Installing via Smithery
To install Meilisearch MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @devlimelabs/meilisearch-ts-mcp --client claude
Manual Installation
-
Clone the repository:
git clone https://github.com/devlimelabs/meilisearch-ts-mcp.git cd meilisearch-ts-mcp
-
Install dependencies:
npm install
-
Create a
.env
file based on the example:cp .env.example .env
-
Edit the
.env
file to configure your Meilisearch connection.
Docker Setup
The Meilisearch MCP Server can be run in a Docker container for easier deployment and isolation.
Using Docker Compose
The easiest way to get started with Docker is to use Docker Compose:
# Start the Meilisearch MCP Server
docker-compose up -d
# View logs
docker-compose logs -f
# Stop the server
docker-compose down
Building and Running the Docker Image Manually
You can also build and run the Docker image manually:
# Build the Docker image
docker build -t meilisearch-ts-mcp .
# Run the container
docker run -p 3000:3000 --env-file .env meilisearch-ts-mcp
Development Setup
For developers who want to contribute to the Meilisearch MCP Server, we provide a convenient setup script:
# Clone the repository
git clone https://github.com/devlimelabs-ts-mcp/meilisearch-ts-mcp.git
cd meilisearch-ts-mcp
# Run the development setup script
./scripts/setup-dev.sh
The setup script will:
- Create a
.env
file from.env.example
if it doesn't exist - Install dependencies
- Build the project
- Run tests to ensure everything is working correctly
After running the setup script, you can start the server in development mode:
npm run dev
Usage
Building the Project
npm run build
Running the Server
npm start
Development Mode
npm run dev
Claude Desktop Integration
The Meilisearch MCP Server can be integrated with Claude for Desktop, allowing you to interact with your Meilisearch instance directly through Claude.
Automated Setup
We provide a setup script that automatically configures Claude for Desktop to work with the Meilisearch MCP Server:
# First build the project
npm run build
# Then run the setup script
node scripts/claude-desktop-setup.js
The script will:
- Detect your operating system and locate the Claude for Desktop configuration file
- Read your Meilisearch configuration from the
.env
file - Generate the necessary configuration for Claude for Desktop
- Provide instructions for updating your Claude for Desktop configuration
Manual Setup
If you prefer to manually configure Claude for Desktop:
-
Locate your Claude for Desktop configuration file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- Linux:
~/.config/Claude/claude_desktop_config.json
- macOS:
-
Add the following configuration (adjust paths as needed):
{
"mcpServers": {
"meilisearch": {
"command": "node",
"args": ["/path/to/meilisearch-ts-mcp/dist/index.js"],
"env": {
"MEILISEARCH_HOST": "http://localhost:7700",
"MEILISEARCH_API_KEY": "your-api-key"
}
}
}
}
-
Restart Claude for Desktop to apply the changes.
-
In Claude, type: "I want to use the Meilisearch MCP server" to activate the integration.
Cursor Integration
The Meilisearch MCP Server can also be integrated with Cursor, an AI-powered code editor.
Setting Up MCP in Cursor
-
Install and set up the Meilisearch MCP Server:
git clone https://github.com/devlimelabs/meilisearch-ts-mcp.git cd meilisearch-ts-mcp npm install npm run build
-
Start the MCP server:
npm start
-
In Cursor, open the Command Palette (Cmd/Ctrl+Shift+P) and search for "MCP: Connect to MCP Server".
-
Select "Connect to a local MCP server" and enter the following details:
- Name: Meilisearch
- Command: node
- Arguments: /absolute/path/to/meilisearch-ts-mcp/dist/index.js
- Environment Variables:
MEILISEARCH_HOST=http://localhost:7700 MEILISEARCH_API_KEY=your-api-key
-
Click "Connect" to establish the connection.
-
You can now interact with your Meilisearch instance through Cursor by typing commands like "Search my Meilisearch index for documents about..."
Available Tools
The Meilisearch MCP Server provides the following tools:
Index Tools
create-index
: Create a new indexget-index
: Get information about an indexlist-indexes
: List all indexesupdate-index
: Update an indexdelete-index
: Delete an index
Document Tools
add-documents
: Add documents to an indexget-document
: Get a document by IDget-documents
: Get multiple documentsupdate-documents
: Update documentsdelete-document
: Delete a document by IDdelete-documents
: Delete multiple documentsdelete-all-documents
: Delete all documents in an index
Search Tools
search
: Search for documentsmulti-search
: Perform multiple searches in a single request
Settings Tools
get-settings
: Get index settingsupdate-settings
: Update index settingsreset-settings
: Reset index settings to default- Various specific settings tools (synonyms, stop words, ranking rules, etc.)
Task Tools
list-tasks
: List tasks with optional filteringget-task
: Get information about a specific taskcancel-tasks
: Cancel tasks based on provided filterswait-for-task
: Wait for a specific task to complete
System Tools
health
: Check the health status of the Meilisearch serverversion
: Get version informationinfo
: Get system informationstats
: Get statistics about indexes
Vector Tools (Experimental)
enable-vector-search
: Enable vector searchget-experimental-features
: Get experimental features statusupdate-embedders
: Configure embeddersget-embedders
: Get embedders configurationreset-embedders
: Reset embedders configurationvector-search
: Perform vector search
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.