MedVision MCP

MedVision MCP

Provides AI-powered medical image analysis tools for LLM agents, enabling tasks such as X-ray classification, interactive segmentation, and visual question answering. It supports multi-step diagnostic reasoning and clinical workflows through a suite of specialized medical AI models.

Category
Visit Server

README

MedVision MCP

Medical Vision AI Tools via Model Context Protocol (MCP)

Overview

MedVision MCP provides AI-powered medical image analysis tools accessible through the Model Context Protocol. It enables LLM agents (like Claude, GitHub Copilot) to analyze chest X-rays using Visual RAG (RAD-DINO + FAISS + DenseNet).

Features

  • DenseNet Classification: 18 pathology detection (Lung Opacity, Pneumonia, etc.)
  • RAD-DINO Embeddings: 768-dim visual embeddings for similarity search
  • FAISS Index: Fast similarity search for similar historical cases
  • DICOM Support: Native DICOM file reading
  • Gradio Canvas: Interactive ROI drawing/annotation interface
  • ROI Analysis: Analyze specific regions drawn on X-rays
  • 🔜 Medical SAM: SAM-based region segmentation

Quick Start

# Clone
git clone https://github.com/u9401066/medvision-mcp.git
cd medvision-mcp

# Install with uv
uv sync

# Test classification
uv run python -c "
import asyncio
from src.medvision_mcp.server import classify_xray

async def main():
    result = await classify_xray('path/to/xray.dcm')
    print(result)
asyncio.run(main())
"

MCP Tools

Tool Description
analyze_xray Full Visual RAG analysis (classification + similarity)
classify_xray Quick DenseNet-121 classification (18 pathologies)
search_similar_cases RAG similarity search
build_rag_index Build FAISS index from image directory
load_rag_index Load pre-built index
get_engine_status Check model loading status

Gradio UI

Launch the interactive web UI:

# Start Gradio server
uv run python -m src.medvision_mcp.ui.app
# Open http://localhost:7860

UI Tabs:

Tab Description
📊 Analysis Full image analysis (classification + RAG)
⚡ Quick Classify Fast 18-pathology classification
🎨 Canvas ROI Draw ROIs and analyze specific regions
🔧 Build Index Create FAISS index from images
📂 Load Index Load pre-built index
ℹ️ Status Check model loading status

Claude Desktop Configuration

Add to ~/.config/claude/claude_desktop_config.json:

{
  "mcpServers": {
    "medvision": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/medvision-mcp", "python", "-m", "src.medvision_mcp.server"]
    }
  }
}

Architecture

┌─────────────────────────────────────────────────────────┐
│                    MCP Client (Claude, Copilot)         │
└─────────────────────────┬───────────────────────────────┘
                          │ stdio
┌─────────────────────────▼───────────────────────────────┐
│                   MedVision MCP Server                  │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────────┐  │
│  │ classify    │  │ search      │  │ analyze         │  │
│  │ _xray       │  │ _similar    │  │ _xray           │  │
│  └─────────────┘  └─────────────┘  └─────────────────┘  │
│                          │                              │
│  ┌───────────────────────▼────────────────────────────┐ │
│  │               Visual RAG Engine                    │ │
│  │         RAD-DINO │ FAISS │ DenseNet-121            │ │
│  └────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────┘

Development

# Install dev dependencies  
uv sync --dev

# Run tests
uv run pytest

# Check types
uv run pyright

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured