MedifinderMCP Server

MedifinderMCP Server

Message Communication Protocol (MCP) server that facilitates secure, standardized communication between system components and the medicine inventory database. Provides RESTful endpoints for location-based medicine searches, availability queries, and optimized messaging for WhatsApp integration.

MediFinderBot

Research & Data
Visit Server

README

MedifinderMCP Server

An MCP (Model Context Protocol) server for medicine inventory queries, designed to work with AI assistants like Claude.

Overview

The MedifinderMCP Server provides tools and resources for querying a medicine inventory database through the Model Context Protocol (MCP). It allows AI assistants and other clients to:

  • Search for medicines by name or location
  • Check medicine availability at different healthcare facilities
  • Get stock information for specific medicines
  • View statistics on medicine availability by region
  • Analyze stock status across the healthcare system

Database Schema

The application uses a normalized database schema:

Region
  - region_id (PK)
  - name
  - code
  - created_at
  - updated_at

MedicalCenter
  - center_id (PK)
  - code
  - name
  - region_id (FK -> Region)
  - category
  - reporter_name
  - institution_type
  - reporter_type
  - address
  - latitude
  - longitude
  - created_at
  - updated_at

ProductType
  - type_id (PK)
  - code
  - name
  - description
  - created_at
  - updated_at

Product
  - product_id (PK)
  - code
  - name
  - type_id (FK -> ProductType)
  - description
  - dosage_form
  - strength
  - created_at
  - updated_at

Inventory
  - inventory_id (PK)
  - center_id (FK -> MedicalCenter)
  - product_id (FK -> Product)
  - current_stock
  - avg_monthly_consumption
  - accumulated_consumption_4m
  - measurement
  - last_month_consumption
  - last_month_stock
  - status_indicator
  - cpma_12_months_ago
  - cpma_24_months_ago
  - cpma_36_months_ago
  - accumulated_consumption_12m
  - report_date
  - status
  - created_at
  - updated_at

User
  - user_id (PK)
  - phone_number
  - name
  - preferred_location
  - created_at
  - updated_at

SearchHistory
  - search_id (PK)
  - user_id (FK -> User)
  - product_query
  - location_query
  - search_radius
  - results_count
  - created_at

Project Structure

medifinder-mcp/
├── app/
│   ├── __init__.py
│   ├── config.py            # Configuration management
│   ├── db/
│   │   ├── __init__.py
│   │   ├── connection.py    # Database connection handling
│   │   └── queries.py       # SQL queries
│   ├── models/
│   │   ├── __init__.py
│   │   ├── base.py          # Base model with timestamp fields
│   │   ├── region.py        # Region model
│   │   ├── medical_center.py # Medical center model
│   │   ├── product_type.py  # Product type model
│   │   ├── product.py       # Product model
│   │   ├── inventory.py     # Inventory model
│   │   ├── user.py          # User model
│   │   └── search_history.py # Search history model
│   ├── mcp/
│   │   ├── __init__.py
│   │   ├── server.py        # MCP server setup
│   │   ├── tools.py         # Tool implementations
│   │   ├── resources.py     # Resource implementations
│   │   └── prompts.py       # Prompt templates
│   └── utils/
│       ├── __init__.py
│       └── helpers.py       # Helper functions
├── main.py                  # Application entry point
├── requirements.txt         # Dependencies
└── README.md                # Documentation

MCP Features

Tools

  • search_medicines: Search for medicines by name or location
  • get_medicine_locations: Find locations where a medicine is available
  • get_medicine_stock: Get stock information for a specific medicine
  • get_regional_statistics: Get medicine statistics by region
  • get_medicine_status: Get overall medicine statistics
  • diagnose_database: Check database connectivity and content
  • troubleshoot_connection: Detailed database connection diagnostics
  • create_database_schema: Create database tables based on models

Resources

  • product://{id}: Get product details by ID
  • stock://{name}: Get stock information for a product by name
  • locations://{region}: Get medical centers in a specific region
  • statistics://stock: Get overall stock statistics
  • statistics://regions: Get regional statistics

Prompts

  • medicine_search_prompt: Template for searching medicines by name
  • medicine_availability_prompt: Template for checking medicine availability
  • medicine_statistics_prompt: Template for analyzing medicine statistics
  • regional_availability_prompt: Template for analyzing regional medicine availability

Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/medifinder-mcp.git
    cd medifinder-mcp
    
  2. Create a virtual environment and install dependencies:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    pip install -r requirements.txt
    
  3. Set up environment variables by creating a .env file:

    DB_HOST=localhost
    DB_PORT=5432
    DB_NAME=medifinderbot
    DB_USER=your_user
    DB_PASSWORD=your_password
    DEBUG=True
    ENV=development
    SERVER_NAME=MedifinderMCP
    SERVER_VERSION=1.0.0
    MCP_SERVER_NAME=MedifinderMCP
    MCP_SERVER_DESCRIPTION=MCP server for medicine inventory queries
    MAX_SEARCH_RESULTS=50
    SEARCH_SIMILARITY_THRESHOLD=0.3
    
  4. Create the database:

    # Connect to PostgreSQL
    psql -U postgres
    
    # Create database and user
    CREATE DATABASE medifinderbot;
    CREATE USER your_user WITH PASSWORD 'your_password';
    GRANT ALL PRIVILEGES ON DATABASE medifinderbot TO your_user;
    
    # Exit PostgreSQL
    \q
    
  5. Initialize the database schema: After starting the server, use the create_database_schema tool to create the tables.

Usage

Running the Server Locally

You can run the MCP server directly:

python main.py

Using MCP Inspector

For development and testing, the MCP Inspector provides a convenient way to interact with the server:

  1. Install MCP CLI:

    pip install mcp[cli]
    
  2. Run the server in development mode:

    python -m mcp dev main.py
    
  3. The MCP Inspector will open in your browser, allowing you to:

    • Test tools and resources
    • View the output of diagnostic tools
    • Experiment with different queries

Integration with Claude Desktop

To use the server with Claude Desktop:

  1. Create a batch file for reliable startup (run-mcp-server.bat):

    @echo off
    cd /d %~dp0
    call venv\Scripts\activate.bat
    python main.py
    
  2. Install the server in Claude Desktop:

    mcp install run-mcp-server.bat -f .env
    
  3. Alternatively, edit Claude Desktop's config file manually:

    {
      "mcpServers": {
        "MedifinderMCP": {
          "command": "C:\\path\\to\\project\\venv\\Scripts\\python.exe",
          "args": ["C:\\path\\to\\project\\main.py"],
          "env": {
            "DB_HOST": "localhost",
            "DB_PORT": "5432",
            "DB_NAME": "medifinderbot",
            "DB_USER": "your_user",
            "DB_PASSWORD": "your_password",
            "DEBUG": "True",
            "ENV": "development",
            "SERVER_NAME": "MedifinderMCP",
            "SERVER_VERSION": "1.0.0",
            "MCP_SERVER_NAME": "MedifinderMCP",
            "MCP_SERVER_DESCRIPTION": "MCP server for medicine inventory queries",
            "MAX_SEARCH_RESULTS": "50",
            "SEARCH_SIMILARITY_THRESHOLD": "0.3"
          }
        }
      }
    }
    
  4. In Claude Desktop, select the MedifinderMCP server from the servers dropdown to enable it for your conversation.

Troubleshooting

Common Issues

  1. Database Connection Issues:

    • Use the troubleshoot_connection tool to diagnose connection problems
    • Verify your database credentials in the .env file
    • Ensure PostgreSQL is running on the specified port
  2. Missing Tables:

    • Use the create_database_schema tool to create the database tables
    • Check logs for any errors during schema creation
  3. Empty Results:

    • If queries return no results, there might not be any data in your tables
    • You need to import data into the tables using your data ingestion process
  4. Session Binding Errors:

    • If you see "Instance is not bound to a Session" errors, ensure model instances are converted to dictionaries within active sessions
    • See how this is handled in the queries.py file for examples
  5. Missing Dependencies:

    • Run pip install -r requirements.txt to ensure all dependencies are installed
    • Common missing dependencies are: mcp, python-dotenv, psycopg2-binary

Diagnostic Tools

When troubleshooting, use these built-in diagnostic tools:

  1. diagnose_database: Checks if:

    • The database connection works
    • Tables exist
    • Tables contain data
  2. troubleshoot_connection: Provides detailed information about:

    • Database connection settings
    • Connection errors
    • Table structure
    • Recommended fixes
  3. create_database_schema: Creates the database tables and provides:

    • List of created tables
    • Any errors that occurred
    • Test record creation results

License

MIT License

Contributors

  • Lenin Carrasco - Initial work

Recommended Servers

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.

Featured
TypeScript
MCP PubMed Search

MCP PubMed Search

Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.

Featured
Python
dbt Semantic Layer MCP Server

dbt Semantic Layer MCP Server

A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.

Featured
TypeScript
mixpanel

mixpanel

Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Featured
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python
Nefino MCP Server

Nefino MCP Server

Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.

Official
Python
Vectorize

Vectorize

Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.

Official
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

A server that provides access to Mathematica documentation through FastMCP, enabling users to retrieve function documentation and list package symbols from Wolfram Mathematica.

Local
Python
kb-mcp-server

kb-mcp-server

An MCP server aimed to be portable, local, easy and convenient to support semantic/graph based retrieval of txtai "all in one" embeddings database. Any txtai embeddings db in tar.gz form can be loaded

Local
Python
Research MCP Server

Research MCP Server

The server functions as an MCP server to interact with Notion for retrieving and creating survey data, integrating with the Claude Desktop Client for conducting and reviewing surveys.

Local
Python