md2doc
An MCP server that converts Markdown text to DOCX format using an external conversion service. It supports custom templates, multi-language output, and provides flexible file handling for both local and cloud-based deployments.
README
md2doc - Markdown to DOCX MCP Server
A Model Context Protocol (MCP) server that converts Markdown text to DOCX format using an external conversion service.
<img src="https://raw.githubusercontent.com/Yorick-Ryu/md2doc-mcp/master/images/md2doc.png" alt="md2doc Demo" width="600" style="max-width: 100%; height: auto;">
Features
- Convert Markdown text to DOCX format
- Support for custom templates
- Multi-language support (English, Chinese, etc.)
- Automatic file download to user's Downloads directory
- Template listing and management
Usage
Cherry Studio
- Open Cherry Studio
- Go to Settings → MCP
- Add the server configuration:
{ "mcpServers": { "md2doc": { "command": "uvx", "args": ["md2doc"], "env": { "DEEP_SHARE_API_KEY": "your-api-key-here" } } } }
Claude Desktop
-
Open your Claude Desktop configuration file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
- macOS:
-
Add the md2doc server:
{ "mcpServers": { "md2doc": { "command": "uvx", "args": ["md2doc"], "env": { "DEEP_SHARE_API_KEY": "your-api-key-here" } } } } -
Restart Claude Desktop
Command Line (Quick Start)
For immediate use without any client setup:
# Install and run the server
uvx md2doc
# Or with environment variable
DEEP_SHARE_API_KEY="your-api-key-here" uvx md2doc
Python Integration
You can also use md2doc directly in your Python projects:
import asyncio
from md2doc.api_client import ConversionAPIClient
from md2doc.models import ConvertTextRequest
async def convert_markdown():
client = ConversionAPIClient()
request = ConvertTextRequest(
content="# Hello World\n\nThis is **markdown** content.",
filename="example",
language="zh",
template_name="templates",
remove_hr=False,
compat_mode=True
)
response = await client.convert_text(request)
if response.success:
print(f"File saved to: {response.file_path}")
# Run the conversion
asyncio.run(convert_markdown())
Other MCP Clients
The server works with any MCP-compatible client. Configure it to run:
uvx md2doc
With environment variables:
DEEP_SHARE_API_KEY="your-api-key-here" uvx md2doc
Cloud Deployment (Remote Server)
When deploying this MCP server on a cloud server (VPS/Docker), set MCP_SAVE_REMOTE=true to return a temporary download link instead of saving to a local directory:
# In your cloud environment
export DEEP_SHARE_API_KEY="your-api-key-here"
export MCP_SAVE_REMOTE=true
uvx md2doc
The server will provide a download link for the converted document.
API Key
Free Trial API Key
Use this key for testing:
f4e8fe6f-e39e-486f-b7e7-e037d2ec216f
Purchase API Key - Super Low Price!
Available Tools
convert_markdown_to_docx: Convert markdown text to DOCXlist_templates: Get available templates by language
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.