MCPO - MCP Pollinations Proxy

MCPO - MCP Pollinations Proxy

A Docker-containerized MCP proxy that provides AI image generation, text generation, vision analysis, and text-to-speech capabilities through REST endpoints using Pollinations AI services. Enables multimodal AI interactions including image creation, transformation, OCR, and audio generation through standard HTTP APIs.

Category
Visit Server

README

🚀 MCPO - MCP Pollinations Proxy

A Docker-containerized MCP (Model Context Protocol) proxy that combines mcpo CLI tool with Pollinations MCP server, providing AI image, text, audio, and vision generation capabilities through standard REST endpoints.

🌟 Features

🎨 Multimodal AI Capabilities

  • Image Generation: Create stunning images from text prompts with 1024x1024 default resolution
  • Image-to-Image: Transform existing images using text descriptions
  • Vision Analysis: Analyze, describe, compare images and extract text (OCR)
  • Text Generation: Simple and advanced text generation with system prompts
  • Text-to-Speech: Convert text to speech with multiple voice options
  • Audio Generation: Create contextual audio responses

🔧 Technical Features

  • OpenAPI REST Endpoints: Standard HTTP/REST interface for all MCP capabilities
  • Docker Containerized: Easy deployment and consistent environment
  • Real-time Processing: Direct API integration with Pollinations services
  • Multiple Model Support: Access various AI models for different tasks

🚀 Quick Start

Prerequisites

  • Docker and Docker Compose
  • Port 7777 available

Installation & Usage

  1. Clone the repository

    git clone <repository-url>
    cd mcpo
    
  2. Build and run the container

    docker-compose build
    docker-compose up
    
  3. Access the service

    • Service runs on: http://localhost:7777
    • OpenAPI docs: http://localhost:7777/docs
    • API endpoints: http://localhost:7777/api/...

Development Commands

# Build the container
docker-compose build

# Run in detached mode
docker-compose up -d

# View logs
docker-compose logs

# Stop the service
docker-compose down

🎯 API Endpoints

The service exposes Pollinations MCP server functionality through REST endpoints:

🖼️ Image Generation

  • POST /api/generateImage - Generate image from text prompt
  • POST /api/generateImageUrl - Get image generation URL
  • POST /api/generateImageToImage - Transform image with text prompt
  • GET /api/listImageModels - List available image models

📝 Text Generation

  • POST /api/generateText - Simple text generation
  • POST /api/generateAdvancedText - Advanced text with system prompts
  • GET /api/listTextModels - List available text models

👁️ Vision & Analysis

  • POST /api/analyzeImageFromUrl - Analyze image from URL
  • POST /api/analyzeImageFromData - Analyze base64 image data
  • POST /api/compareImages - Compare two images
  • POST /api/extractTextFromImage - OCR text extraction

🎵 Audio Generation

  • POST /api/sayText - Text-to-speech conversion
  • POST /api/respondAudio - Generate contextual audio responses
  • GET /api/listAudioVoices - List available voices

🏗️ Architecture

┌─────────────────┐    ┌──────────────┐    ┌─────────────────────┐
│   Client App    │───▶│  MCPO Proxy  │───▶│  Pollinations API   │
│   (HTTP/REST)   │    │  (Port 7777) │    │  (MCP Protocol)     │
└─────────────────┘    └──────────────┘    └─────────────────────┘

Container Stack

  • Base: Node.js 18 Alpine Linux
  • Python: Installed for mcpo CLI tool
  • Port: 7777 exposed for HTTP access
  • Host: Configured to bind to 0.0.0.0

Service Flow

  1. Container starts with mcpo CLI tool
  2. mcpo proxies the pollinations-model-context-protocol MCP server
  3. MCP server capabilities become available via OpenAPI endpoints
  4. External applications use standard HTTP/REST calls

📁 Project Structure

mcpo/
├── docker-compose.yml          # Docker compose configuration
├── Dockerfile                  # Container definition
├── CLAUDE.md                   # Development instructions
├── pollinations-mcp-src/       # MCP server source code
│   ├── src/
│   │   ├── services/
│   │   │   ├── imageService.js     # Image generation & transformation
│   │   │   ├── textService.js      # Text generation (simple & advanced)
│   │   │   ├── audioService.js     # Text-to-speech & audio
│   │   │   ├── visionService.js    # Image analysis & OCR
│   │   │   ├── authService.js      # Authentication
│   │   │   └── resourceService.js  # Resource management
│   │   ├── utils/
│   │   │   ├── coreUtils.js        # Core utilities
│   │   │   ├── polyfills.js        # Node.js polyfills
│   │   │   └── schemaUtils.js      # Schema validation
│   │   └── index.js                # Main MCP server
│   └── pollinations-mcp.js         # Entry point
└── README.md                    # This file

🔧 Configuration

Default Settings

  • Image Resolution: 1024x1024 pixels
  • Image Quality: Private=true, NoLogo=true, Enhance=true
  • Text Generation: OpenAI-compatible models
  • Audio Format: MP3 with Alloy voice
  • Vision Models: GPT-4o for image analysis

Environment Variables

The container automatically configures the MCP proxy without additional environment variables needed.

🎨 Usage Examples

Image Generation

curl -X POST http://localhost:7777/api/generateImage \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "A serene mountain landscape at sunset",
    "options": {
      "width": 1024,
      "height": 1024,
      "model": "flux"
    }
  }'

Vision Analysis

curl -X POST http://localhost:7777/api/analyzeImageFromUrl \
  -H "Content-Type: application/json" \
  -d '{
    "imageUrl": "https://example.com/image.jpg",
    "prompt": "What do you see in this image?"
  }'

Text-to-Speech

curl -X POST http://localhost:7777/api/sayText \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Hello, this is a test of text to speech",
    "voice": "alloy",
    "format": "mp3"
  }'

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

🔗 Links


Built with ❤️ using Docker, Node.js, and Python

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured