
MCPO - MCP Pollinations Proxy
A Docker-containerized MCP proxy that provides AI image generation, text generation, vision analysis, and text-to-speech capabilities through REST endpoints using Pollinations AI services. Enables multimodal AI interactions including image creation, transformation, OCR, and audio generation through standard HTTP APIs.
README
🚀 MCPO - MCP Pollinations Proxy
A Docker-containerized MCP (Model Context Protocol) proxy that combines mcpo CLI tool with Pollinations MCP server, providing AI image, text, audio, and vision generation capabilities through standard REST endpoints.
🌟 Features
🎨 Multimodal AI Capabilities
- Image Generation: Create stunning images from text prompts with 1024x1024 default resolution
- Image-to-Image: Transform existing images using text descriptions
- Vision Analysis: Analyze, describe, compare images and extract text (OCR)
- Text Generation: Simple and advanced text generation with system prompts
- Text-to-Speech: Convert text to speech with multiple voice options
- Audio Generation: Create contextual audio responses
🔧 Technical Features
- OpenAPI REST Endpoints: Standard HTTP/REST interface for all MCP capabilities
- Docker Containerized: Easy deployment and consistent environment
- Real-time Processing: Direct API integration with Pollinations services
- Multiple Model Support: Access various AI models for different tasks
🚀 Quick Start
Prerequisites
- Docker and Docker Compose
- Port 7777 available
Installation & Usage
-
Clone the repository
git clone <repository-url> cd mcpo
-
Build and run the container
docker-compose build docker-compose up
-
Access the service
- Service runs on:
http://localhost:7777
- OpenAPI docs:
http://localhost:7777/docs
- API endpoints:
http://localhost:7777/api/...
- Service runs on:
Development Commands
# Build the container
docker-compose build
# Run in detached mode
docker-compose up -d
# View logs
docker-compose logs
# Stop the service
docker-compose down
🎯 API Endpoints
The service exposes Pollinations MCP server functionality through REST endpoints:
🖼️ Image Generation
POST /api/generateImage
- Generate image from text promptPOST /api/generateImageUrl
- Get image generation URLPOST /api/generateImageToImage
- Transform image with text promptGET /api/listImageModels
- List available image models
📝 Text Generation
POST /api/generateText
- Simple text generationPOST /api/generateAdvancedText
- Advanced text with system promptsGET /api/listTextModels
- List available text models
👁️ Vision & Analysis
POST /api/analyzeImageFromUrl
- Analyze image from URLPOST /api/analyzeImageFromData
- Analyze base64 image dataPOST /api/compareImages
- Compare two imagesPOST /api/extractTextFromImage
- OCR text extraction
🎵 Audio Generation
POST /api/sayText
- Text-to-speech conversionPOST /api/respondAudio
- Generate contextual audio responsesGET /api/listAudioVoices
- List available voices
🏗️ Architecture
┌─────────────────┐ ┌──────────────┐ ┌─────────────────────┐
│ Client App │───▶│ MCPO Proxy │───▶│ Pollinations API │
│ (HTTP/REST) │ │ (Port 7777) │ │ (MCP Protocol) │
└─────────────────┘ └──────────────┘ └─────────────────────┘
Container Stack
- Base: Node.js 18 Alpine Linux
- Python: Installed for mcpo CLI tool
- Port: 7777 exposed for HTTP access
- Host: Configured to bind to 0.0.0.0
Service Flow
- Container starts with
mcpo
CLI tool mcpo
proxies thepollinations-model-context-protocol
MCP server- MCP server capabilities become available via OpenAPI endpoints
- External applications use standard HTTP/REST calls
📁 Project Structure
mcpo/
├── docker-compose.yml # Docker compose configuration
├── Dockerfile # Container definition
├── CLAUDE.md # Development instructions
├── pollinations-mcp-src/ # MCP server source code
│ ├── src/
│ │ ├── services/
│ │ │ ├── imageService.js # Image generation & transformation
│ │ │ ├── textService.js # Text generation (simple & advanced)
│ │ │ ├── audioService.js # Text-to-speech & audio
│ │ │ ├── visionService.js # Image analysis & OCR
│ │ │ ├── authService.js # Authentication
│ │ │ └── resourceService.js # Resource management
│ │ ├── utils/
│ │ │ ├── coreUtils.js # Core utilities
│ │ │ ├── polyfills.js # Node.js polyfills
│ │ │ └── schemaUtils.js # Schema validation
│ │ └── index.js # Main MCP server
│ └── pollinations-mcp.js # Entry point
└── README.md # This file
🔧 Configuration
Default Settings
- Image Resolution: 1024x1024 pixels
- Image Quality: Private=true, NoLogo=true, Enhance=true
- Text Generation: OpenAI-compatible models
- Audio Format: MP3 with Alloy voice
- Vision Models: GPT-4o for image analysis
Environment Variables
The container automatically configures the MCP proxy without additional environment variables needed.
🎨 Usage Examples
Image Generation
curl -X POST http://localhost:7777/api/generateImage \
-H "Content-Type: application/json" \
-d '{
"prompt": "A serene mountain landscape at sunset",
"options": {
"width": 1024,
"height": 1024,
"model": "flux"
}
}'
Vision Analysis
curl -X POST http://localhost:7777/api/analyzeImageFromUrl \
-H "Content-Type: application/json" \
-d '{
"imageUrl": "https://example.com/image.jpg",
"prompt": "What do you see in this image?"
}'
Text-to-Speech
curl -X POST http://localhost:7777/api/sayText \
-H "Content-Type: application/json" \
-d '{
"text": "Hello, this is a test of text to speech",
"voice": "alloy",
"format": "mp3"
}'
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Pollinations.AI for the amazing AI APIs
- Model Context Protocol for the MCP standard
- mcpo CLI tool for MCP to OpenAPI conversion
🔗 Links
Built with ❤️ using Docker, Node.js, and Python
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.