MCPMake
Enables management and execution of Python scripts with automatic LLM-extracted argument schemas and validation. Provides script registry, execution history, and intelligent argument parsing like make but for Python scripts.
README
MCPMake
An MCP (Model Context Protocol) server for managing and running Python scripts with LLM-extracted schemas - like make, but smarter.
Features
- Automatic Schema Extraction: Uses LLMs (Claude Sonnet 4 or GPT-4.1) to analyze Python scripts and extract argument schemas
- Script Registry: Store and manage multiple scripts with metadata
- Input Validation: Validates arguments against JSON Schema before execution
- Execution History: Tracks all script runs with full output logs
- Environment Variables: Pass custom env vars per execution
- Flexible Execution: Custom Python interpreters, timeouts, and output truncation
- Update & Re-analyze: Refresh script schemas when code changes
Installation
# Clone or navigate to the project directory
cd mcpmake
# Install in development mode
pip install -e .
Configuration
Set up API keys
You'll need an API key for either Anthropic or OpenAI (or both):
export ANTHROPIC_API_KEY="your-key-here"
# or
export OPENAI_API_KEY="your-key-here"
Add to MCP settings
Add the server to your MCP client configuration (e.g., Claude Desktop):
{
"mcpServers": {
"mcpmake": {
"command": "python",
"args": ["-m", "mcpmake.server"],
"env": {
"ANTHROPIC_API_KEY": "your-key-here"
}
}
}
}
Usage
1. Register a Script
# Register a Python script with automatic schema extraction
register_script(
name="data_processor",
path="/path/to/script.py",
description="Processes data files", # optional, auto-generated if omitted
python_path="/usr/bin/python3", # optional
timeout_seconds=240, # optional, default 240
min_lines=1, # optional, default 1
llm_provider="anthropic" # optional, "anthropic" or "openai"
)
2. List Scripts
list_scripts()
# Shows all registered scripts with descriptions
3. Get Script Info
get_script_info(name="data_processor")
# Shows detailed schema, path, recent runs, etc.
4. Run a Script
run_script(
name="data_processor",
args={
"input_file": "data.csv",
"output_dir": "/tmp/output",
"verbose": true
},
env_vars={ # optional
"API_KEY": "secret123"
},
python_path="/usr/bin/python3", # optional, overrides default
timeout=300, # optional, overrides default
output_lines=100 # optional, default 100
)
5. View Run History
get_run_history(
name="data_processor", # optional, shows all scripts if omitted
limit=10 # optional, default 10
)
6. Update Script Schema
# Re-analyze script after code changes
update_script(
name="data_processor",
llm_provider="anthropic" # optional
)
7. Delete Script
delete_script(name="data_processor")
Data Storage
MCPMake stores data in ~/.mcpmake/:
~/.mcpmake/
├── scripts.json # Script registry and metadata
├── history.jsonl # Execution history log
└── outputs/ # Full script outputs
├── script1_timestamp.log
└── script2_timestamp.log
How It Works
-
Registration: When you register a script, MCPMake:
- Reads the script file
- Sends it to an LLM (Claude Sonnet 4 or GPT-4.1)
- Extracts a JSON Schema describing the script's arguments
- Extracts a description from docstrings/comments
- Stores everything in
scripts.json
-
Execution: When you run a script:
- Validates your arguments against the stored JSON Schema
- Checks if the script file still exists
- Builds command-line arguments from your input
- Runs the script with specified Python interpreter and env vars
- Captures stdout/stderr with timeout protection
- Saves full output to a log file
- Returns truncated output (first N lines)
- Logs execution details to history
-
History: All runs are logged with:
- Timestamp, arguments, exit code
- Execution time
- Full output file path
- Environment variables used
Example Python Scripts
MCPMake works best with scripts that use:
argparse
import argparse
parser = argparse.ArgumentParser(description="Process data files")
parser.add_argument("--input-file", required=True, help="Input CSV file")
parser.add_argument("--output-dir", required=True, help="Output directory")
parser.add_argument("--verbose", action="store_true", help="Verbose output")
args = parser.parse_args()
click
import click
@click.command()
@click.option("--input-file", required=True, help="Input CSV file")
@click.option("--output-dir", required=True, help="Output directory")
@click.option("--verbose", is_flag=True, help="Verbose output")
def main(input_file, output_dir, verbose):
pass
Simple functions
def main(input_file: str, output_dir: str, verbose: bool = False):
"""
Process data files.
Args:
input_file: Path to input CSV file
output_dir: Output directory path
verbose: Enable verbose logging
"""
pass
Requirements
- Python 3.10+
- MCP SDK
- Anthropic SDK (for Claude)
- OpenAI SDK (for GPT)
- jsonschema
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.