MCPilot
A powerful gateway for the Model Context Protocol (MCP) that unifies AI toolchains by federating multiple MCP servers, wrapping REST APIs as MCP tools, and supporting multiple transport methods with an admin dashboard.
README
MCPilot - MCP Gateway
A powerful, FastAPI-based gateway for the Model Context Protocol (MCP), designed to unify and scale your AI toolchain.
✅ Current Status
MCPilot is now fully functional with the following working features:
✅ Working Features
- FastAPI Gateway Server - Running on http://localhost:8000/docs
- Admin Dashboard - Beautiful web UI at http://localhost:8000
- REST API Endpoints - Full CRUD operations via /api/v1/*
- API Wrapper System - Convert REST APIs to MCP tools (tested with JSONPlaceholder)
- Configuration Management - Environment-based settings
- Transport Framework - Ready for HTTP, WebSocket, SSE, stdio
- Modular Architecture - Clean separation of concerns
- Interactive Documentation - OpenAPI/Swagger UI at /docs
🔄 In Progress
- MCP Server Federation - Basic framework ready, needs MCP client integration fixes
- WebSocket Real-time Communication - Framework ready
- Admin UI Management - Backend ready, frontend interactions needed
🧪 Tested Examples
The API wrapper successfully converts REST APIs to MCP tools:
# Example: JSONPlaceholder API → MCP Tool
result = await gateway.call_tool(
"api:jsonplaceholder:get_user",
{"user_id": "1"}
)
# Returns: Full user data from REST API
- Federation of multiple MCP servers into one unified endpoint
- REST API and function wrapping as virtual MCP-compliant tools
- Multiple transport support: HTTP/JSON-RPC, WebSocket, SSE, and stdio
- Centralized tools, prompts, and resources with full JSON-Schema validation
- Admin UI with built-in auth, observability, and transport layers
📁 Project Structure
src/mcpilot/
├── main.py # FastAPI application entry point
├── config.py # Configuration management
├── gateway.py # Core MCP federation logic
├── api.py # REST API endpoints
├── admin.py # Admin management endpoints
├── transports.py # Transport layer implementations
├── api_wrapper.py # REST API to MCP tool wrapper
├── middleware.py # Request/response middleware
└── server.py # Original MCP server implementation
🛠️ Installation
Prerequisites
- Python 3.10 or higher
- uv package manager (recommended) or pip
Install Dependencies
# Using uv (recommended)
uv sync
# Or using pip
pip install -e .
🚀 Quick Start
1. Start the Gateway Server
# Run the FastAPI server
uv run python -m mcpilot.main
# Or using uvicorn directly
uvicorn mcpilot.main:app --reload --host 0.0.0.0 --port 8000
2. Access the Admin UI
Open your browser to http://localhost:8000 to access the admin dashboard.
3. API Documentation
- OpenAPI/Swagger UI:
http://localhost:8000/docs - ReDoc:
http://localhost:8000/redoc
🔧 Configuration
MCPilot can be configured via environment variables or a .env file:
# Server Configuration
MCPILOT_HOST=0.0.0.0
MCPILOT_PORT=8000
MCPILOT_DEBUG=false
# CORS Settings
MCPILOT_CORS_ORIGINS=["*"]
# Logging
MCPILOT_LOG_LEVEL=INFO
Adding MCP Servers
Configure MCP servers via the admin API or by setting up the configuration:
from mcpilot.config import MCPServerConfig
server_config = MCPServerConfig(
name="my-server",
type="stdio",
command="python",
args=["-m", "my_mcp_server"],
enabled=True
)
Adding API Wrappers
Convert REST APIs to MCP tools:
from mcpilot.config import APIWrapperConfig
api_config = APIWrapperConfig(
name="my-api",
base_url="https://api.example.com",
auth_type="bearer",
auth_config={"token": "your-token"},
endpoints=[
{
"name": "get_user",
"method": "GET",
"path": "/users/{user_id}",
"description": "Get user information",
"path_params": [
{"name": "user_id", "type": "string", "required": True}
]
}
]
)
📖 API Endpoints
Core MCP Operations
GET /api/v1/tools- List all available toolsPOST /api/v1/tools/call- Call a toolGET /api/v1/prompts- List all available promptsPOST /api/v1/prompts/get- Get a promptGET /api/v1/resources- List all available resourcesPOST /api/v1/resources/read- Read a resource
Admin Operations
GET /admin/servers- List MCP serversPOST /admin/servers- Add new MCP serverPUT /admin/servers/{name}- Update MCP serverDELETE /admin/servers/{name}- Remove MCP serverGET /admin/api-wrappers- List API wrappersPOST /admin/api-wrappers- Add new API wrapper
Health & Monitoring
GET /health- Health check endpointGET /api/v1/status- Gateway and server statusGET /admin/metrics- System metrics
🔌 WebSocket Support
Connect to the WebSocket endpoint for real-time MCP communication:
const ws = new WebSocket('ws://localhost:8000/api/v1/ws');
// Send MCP JSON-RPC message
ws.send(JSON.stringify({
"jsonrpc": "2.0",
"id": 1,
"method": "tools/list",
"params": {}
}));
🧪 Development
Running in Development Mode
# Install development dependencies
uv sync --dev
# Run with auto-reload
uvicorn mcpilot.main:app --reload --host 0.0.0.0 --port 8000
Testing
# Run tests (when implemented)
uv run pytest
# Type checking
uv run mypy src/mcpilot
📄 License
This project is licensed under the MIT License.
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Original MCP Server Components
MCPilot also includes the original MCP server functionality for development and testing:
Resources
The server implements a simple note storage system with:
- Custom note:// URI scheme for accessing individual notes
- Each note resource has a name, description and text/plain mimetype
Prompts
The server provides a single prompt:
- summarize-notes: Creates summaries of all stored notes
- Optional "style" argument to control detail level (brief/detailed)
- Generates prompt combining all current notes with style preference
Tools
The server implements one tool:
- add-note: Adds a new note to the server
- Takes "name" and "content" as required string arguments
- Updates server state and notifies clients of resource changes
Configuration
[TODO: Add configuration details specific to your implementation]
Quickstart
Install
Claude Desktop
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
<details> <summary>Development/Unpublished Servers Configuration</summary>
"mcpServers": {
"MCPilot": {
"command": "uv",
"args": [
"--directory",
"C:\Users\ary7s\OneDrive\Desktop\MCPilot",
"run",
"MCPilot"
]
}
}
</details>
<details> <summary>Published Servers Configuration</summary>
"mcpServers": {
"MCPilot": {
"command": "uvx",
"args": [
"MCPilot"
]
}
}
</details>
Development
Building and Publishing
To prepare the package for distribution:
- Sync dependencies and update lockfile:
uv sync
- Build package distributions:
uv build
This will create source and wheel distributions in the dist/ directory.
- Publish to PyPI:
uv publish
Note: You'll need to set PyPI credentials via environment variables or command flags:
- Token:
--tokenorUV_PUBLISH_TOKEN - Or username/password:
--username/UV_PUBLISH_USERNAMEand--password/UV_PUBLISH_PASSWORD
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm with this command:
npx @modelcontextprotocol/inspector uv --directory C:\Users\ary7s\OneDrive\Desktop\MCPilot run mcpilot
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.