MCPify

MCPify

Automatically generates and runs MCP servers by scraping API documentation and using Gemini to extract endpoints and configuration. It enables users to interact with any REST API through MCP-compatible clients by simply providing a documentation URL.

Category
Visit Server

README

MCPify

Point it at API docs, get an MCP server.

MCPify scrapes API documentation, uses Gemini to figure out the endpoints/auth/params, and spits out a config file. The runtime reads that config and runs an MCP server that Claude (or any MCP client) can use to call the API.

Installation

git clone https://github.com/yourusername/mcpify.git
cd mcpify
pip install -e .

Needs Python 3.11+ and a Gemini API key.

Usage

export GEMINI_API_KEY="your-api-key"

# Parse docs into a config file
mcpify parse https://api.example.com/docs -o my-api.json

# Run the server
mcpify serve my-api.json --auth "your-api-token"

# Or do both at once
mcpify quickstart https://api.example.com/docs --auth "token"

To use with Claude Desktop, add to ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "my-api": {
      "command": "mcpify",
      "args": ["serve", "/path/to/my-api.json", "--auth", "your-token"]
    }
  }
}

CLI

mcpify parse <url> - Scrape docs and generate config

mcpify parse https://docs.github.com/en/rest -o github.json --max-pages 15
Option Description
-o, --output Output file (default: mcpify-config.json)
-m, --max-pages Max pages to scrape (default: 10)
--no-follow Don't follow links
-k, --api-key Gemini API key (or use env var)
--model Gemini model (default: gemini-2.0-flash)

mcpify serve <config> - Run MCP server

mcpify serve my-api.json --auth "Bearer token" --transport stdio
Option Description
-a, --auth Auth token for API calls
-t, --transport stdio, sse, or http (default: stdio)

mcpify show <config> - Print config as table

mcpify quickstart <url> - Parse and serve in one shot

Config Format

The generated JSON looks like this:

{
  "name": "my-api",
  "description": "Description of the API",
  "base_url": "https://api.example.com/v1",
  "version": "1.0.0",
  "auth": {
    "type": "bearer",
    "header_name": "Authorization",
    "prefix": "Bearer "
  },
  "tools": [
    {
      "name": "get_users",
      "description": "Retrieve a list of users",
      "method": "GET",
      "path": "/users",
      "parameters": [
        {
          "name": "limit",
          "type": "integer",
          "description": "Max results to return",
          "required": false,
          "location": "query",
          "default": 10
        }
      ],
      "response": {
        "description": "Array of user objects"
      },
      "tags": ["users"]
    }
  ]
}

Auth types: none, api_key, bearer, oauth2

Parameter locations: query, path, header, body

Python API

from mcpify.scraper import scrape_documentation
from mcpify.parser import parse_documentation
from mcpify.runtime import create_mcp_server

# Scrape docs
docs = await scrape_documentation("https://api.example.com/docs")

# Parse with Gemini
config = await parse_documentation(docs)

# Save config
config_path = "my-api.json"
with open(config_path, "w") as f:
    f.write(config.to_json())

# Create and run server
server = create_mcp_server(config, auth_token="your-token")
server.run()

Examples

# GitHub
mcpify parse https://docs.github.com/en/rest/users -o github.json
mcpify serve github.json --auth "ghp_your_token"

# Stripe
mcpify parse https://stripe.com/docs/api -o stripe.json
mcpify serve stripe.json --auth "sk_test_your_key"

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured