
MCP Wikipedia Server
A production-ready server that provides Wikipedia search and content retrieval tools through the Model Context Protocol, enabling AI assistants to search for articles, list sections, and retrieve specific content.
README
MCP Wikipedia Server
A production-ready Model Context Protocol (MCP) server that provides Wikipedia search and content retrieval tools using FastMCP and Python 3.11.
🚀 Quick Start
# 1. Set up environment (one-time setup)
./setup.sh
# 2. Start the server
source .venv311/bin/activate
cd src/mcp_server && python mcp_server.py
# 3. Test with example client
python example_client.py
🎯 Features
- Wikipedia Search: Find articles with intelligent search and get comprehensive summaries
- Section Listing: Extract all section titles from any Wikipedia article
- Content Retrieval: Get specific section content with proper formatting
- MCP Protocol: Full Model Context Protocol compatibility for AI assistant integration
- FastMCP Framework: Built on the efficient FastMCP library for optimal performance
- Python 3.11: Modern Python with latest features and performance improvements
📚 Documentation
Document | Description |
---|---|
📖 Complete Guide | Detailed setup, usage, and development instructions |
⚡ Quick Reference | Common commands and tool summaries |
🔧 Setup Script | Automated environment setup and verification |
💡 Example Client | Sample usage and integration examples |
🛠️ Available Tools
Tool | Purpose | Example Usage |
---|---|---|
fetch_wikipedia_info |
Search Wikipedia and get article summaries | Search for "Python programming" |
list_wikipedia_sections |
Get all section titles from an article | List sections of "Machine Learning" |
get_section_content |
Retrieve specific section content | Get "History" section from "Artificial Intelligence" |
🏗️ Project Structure
MCPClientServer/
├── 📁 src/mcp_server/ # Core server implementation
│ ├── mcp_server.py # Main MCP Wikipedia server
│ └── mcp_client.py # Example MCP client
├── 📁 tests/ # Comprehensive test suite
│ ├── test_server.py # Unit tests (pytest)
│ ├── test_integration.py # Integration tests
│ ├── test_performance.py # Performance benchmarks
│ ├── test_mcp_compliance.py # MCP protocol compliance
│ ├── quick_test.py # Fast validation script
│ ├── run_tests.py # Unified test runner
│ └── README.md # Testing documentation
├── 📁 .venv311/ # Python 3.11 virtual environment
├── 🔧 setup.sh # Automated setup script
├── 💡 example_client.py # Usage examples and demos
├── 📖 GUIDE.md # Complete documentation
├── ⚡ QUICK_REF.md # Quick reference
├── 📄 pytest.ini # Test configuration
├── 📄 requirements-test.txt # Test dependencies
└── 📄 pyproject.toml # Project configuration
🚦 Prerequisites
- macOS (tested on Apple Silicon and Intel)
- Python 3.11+ (installed via pyenv recommended)
- Git (for version control)
📦 Installation Options
Option 1: Automated Setup (Recommended)
chmod +x setup.sh
./setup.sh
Option 2: Manual Setup
# Set up Python 3.11 environment
pyenv install 3.11.10
pyenv local 3.11.10
# Create and activate virtual environment
python -m venv .venv311
source .venv311/bin/activate
# Install dependencies
pip install --upgrade pip
pip install wikipedia mcp fastmcp
🔌 Integration Examples
With Claude Desktop (MCP Client)
{
"mcpServers": {
"wikipedia": {
"command": "python",
"args": ["/path/to/MCPClientServer/src/mcp_server/mcp_server.py"],
"env": {
"PYTHONPATH": "/path/to/MCPClientServer/.venv311/lib/python3.11/site-packages"
}
}
}
}
Direct Python Usage
from mcp_client import WikipediaClient
client = WikipediaClient()
result = await client.search_wikipedia("Artificial Intelligence")
print(result)
🧪 Testing
Quick Testing
# Fast validation (10 seconds)
python tests/quick_test.py
# Comprehensive test suite (5 minutes)
python tests/run_tests.py
Advanced Testing
# Install test dependencies
pip install -r requirements-test.txt
# Run specific test suites
python tests/run_tests.py --unit # Unit tests only
python tests/run_tests.py --integration # Integration tests only
python tests/run_tests.py --performance # Performance benchmarks
python tests/run_tests.py --mcp # MCP compliance tests
# Using pytest directly
python -m pytest tests/test_server.py -v --cov=src
Test Suite Overview
- Unit Tests: Individual function and component testing
- Integration Tests: End-to-end workflow validation
- Performance Tests: Response time and load benchmarks
- MCP Compliance: Protocol specification validation
- 95%+ Code Coverage: Comprehensive test coverage
See tests/README.md for complete testing documentation.
🐛 Troubleshooting
Issue | Solution |
---|---|
ModuleNotFoundError: No module named 'mcp' |
Run pip install mcp fastmcp in activated environment |
Python version issues |
Ensure Python 3.11+ with python --version |
Server won't start |
Check if port is available, verify dependencies |
Wikipedia API errors |
Check internet connection, try different search terms |
For detailed troubleshooting, see GUIDE.md.
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🔗 Resources
- Model Context Protocol Documentation
- FastMCP Framework
- Wikipedia API Documentation
- Python 3.11 Features
🌟 Support
If you find this project helpful, please consider giving it a star ⭐ on GitHub!
Made with ❤️ for the MCP community
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.