MCP Web Search Server
Enables privacy-focused web searches, social media lookups, and web archive retrieval across multiple engines including DuckDuckGo, Brave, Reddit, YouTube, and Wayback Machine with built-in caching and security features.
README
📂 MCP Web Search Server
A privacy‑focused web, social media, and archive search server exposing tools via the Model Control Protocol (MCP) for controlled access to external search capabilities.
Table of Contents
- Features
- Installation & Quick Start
- Command‑Line Options
- Integration with LM Studio
- MCP API Overview
- Available Tools
- Security Features
🎯 Features
- Parallel search across multiple privacy‑focused web engines.
- Social media lookup for public content on major platforms.
- Archive retrieval from Wayback Machine, archive.today, Google Cache and others.
- Dynamic listing of supported engines and archive services.
- Result caching with LRU eviction to speed up repeated queries.
📦 Installation & Quick Start
# Clone the repository (if applicable)
git clone https://github.com/undici77/MCPWebSearch.git
cd MCPWebSearch
# Run the startup script (adjust name if different)
./run.sh -d /path/to/working/directory
1️⃣ Create & activate a Python virtual environment (.venv).
2️⃣ Install all required dependencies from requirements.txt.
3️⃣ Launch the MCP Search Server (main.py) which listens on stdin/stdout for JSON‑RPC messages.
📌 Ensure the startup script is executable:
chmod +x run.sh
⚙️ Command‑Line Options
| Option | Description |
|---|---|
-d, --directory |
Path to the working directory (default: current process dir). |
The server itself does not require additional CLI flags; all configuration is performed via JSON‑RPC.
🤝 Integration with LM Studio
Add an entry to your mcp.json so LM Studio can start the server automatically:
{
"mcpServers": {
"web-search": {
"command": "/absolute/path/to/run.sh",
"args": [
"-d",
"/absolute/path/to/working/directory"
],
"env": { "WORKING_DIR": "." }
}
}
}
📌 Make the script executable (
chmod +x /absolute/path/to/run.sh) and run./run.shonce to install the virtual environment before launching LM Studio.
📡 MCP API Overview
All communication follows JSON‑RPC 2.0 over stdin/stdout.
initialize
{
"jsonrpc": "2.0",
"id": 1,
"method": "initialize",
"params": {}
}
Response: protocol version (2024-11-05), server capabilities (tool enumeration) and basic server info (name, version).
tools/list
{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/list",
"params": {}
}
Response: an array of tool definitions (name, description, input schema).
tools/call
{
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {
"name": "<tool_name>",
"arguments": { … }
}
}
Note: The tool identifier key is name, not tool.
🛠️ Available Tools
web_search
Search the web using multiple privacy‑focused engines in parallel.
| Name | Type | Required | Description |
|---|---|---|---|
query |
string | ✅ | Search query (max 500 characters). |
engine |
string | ❌ (default all) |
Engine to use (duckduckgo, brave, startpage, ecosia, mojeek, yandex or all). |
max_results |
integer | ❌ (default 20) | Max results per engine (1‑50). |
Example
{
"jsonrpc": "2.0",
"id": 10,
"method": "tools/call",
"params": {
"name": "web_search",
"arguments": {
"query": "privacy focused search engines",
"engine": "duckduckgo",
"max_results": 15
}
}
}
The server returns a formatted text block containing titles, URLs and snippets from each selected engine.
social_search
Search public content on major social‑media platforms.
| Name | Type | Required | Description |
|---|---|---|---|
query |
string | ✅ | Search query (max 500 characters). |
platform |
string | ❌ (default all) |
Platform to search (twitter, reddit, youtube, github, stackoverflow, medium, pinterest, tiktok, instagram, facebook, linkedin or all). |
Example
{
"jsonrpc": "2.0",
"id": 11,
"method": "tools/call",
"params": {
"name": "social_search",
"arguments": {
"query": "AI ethics research",
"platform": "reddit"
}
}
}
The response contains direct URLs that can be opened in a browser.
archives_search
Find archived versions of a URL across multiple web‑archive services.
| Name | Type | Required | Description |
|---|---|---|---|
url |
string | ✅ | Complete URL (must include http:// or https://). |
service |
string | ❌ (default all) |
Archive service (wayback, archive_today, google_cache, bing_cache, yandex_cache, cachedview, ghostarchive or all). |
check_availability |
boolean | ❌ (default false) | When true, the server queries the Wayback Machine API for snapshot statistics. |
Example
{
"jsonrpc": "2.0",
"id": 12,
"method": "tools/call",
"params": {
"name": "archives_search",
"arguments": {
"url": "https://example.com",
"service": "wayback",
"check_availability": true
}
}
}
The response lists archive URLs and, if requested, snapshot counts and timestamps.
list_engines
List all available privacy‑focused search engines.
| Name | Type | Required | Description |
|---|---|---|---|
| (No parameters) | — | — | — |
Example
{
"jsonrpc": "2.0",
"id": 13,
"method": "tools/call",
"params": {
"name": "list_engines",
"arguments": {}
}
}
The server returns a markdown‑formatted overview of each engine and usage notes.
list_archives_services
List all supported web‑archive services.
| Name | Type | Required | Description |
|---|---|---|---|
| (No parameters) | — | — | — |
Example
{
"jsonrpc": "2.0",
"id": 14,
"method": "tools/call",
"params": {
"name": "list_archives_services",
"arguments": {}
}
}
The response includes a description of each service, its ID and key features.
clear_cache
Clear the internal search‑result cache.
| Name | Type | Required | Description |
|---|---|---|---|
| (No parameters) | — | — | — |
Example
{
"jsonrpc": "2.0",
"id": 15,
"method": "tools/call",
"params": {
"name": "clear_cache",
"arguments": {}
}
}
The server replies with a confirmation message.
🔐 Security Features
- Query sanitisation – strips control characters, removes HTML tags and enforces
MAX_QUERY_LENGTH(500). - Strict URL validation – accepts only
http://orhttps://schemes with a valid domain. - Blocked patterns – regexes prevent
<script>injection,javascript:URIs and event‑handler attributes. - Input schema enforcement – each tool validates required fields via the JSON‑RPC
inputSchema. - Rate limiting – an asyncio semaphore caps concurrent external requests (
MAX_CONCURRENT_SEARCHES).
© 2025 Undici77 – All rights reserved.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.