
MCP Video Recognition Server
Provides tools for image, audio, and video recognition using Google's Gemini AI through the Model Context Protocol.
README
MCP Video Recognition Server
An MCP (Model Context Protocol) server that provides tools for image, audio, and video recognition using Google's Gemini AI.
Features
- Image Recognition: Analyze and describe images using Google Gemini AI
- Audio Recognition: Analyze and transcribe audio using Google Gemini AI
- Video Recognition: Analyze and describe videos using Google Gemini AI
Prerequisites
- Node.js 18 or higher
- Google Gemini API key
Installation
Manual Installation
-
Clone the repository:
git clone https://github.com/yourusername/mcp-video-recognition.git cd mcp-video-recognition
-
Install dependencies:
npm install
-
Build the project:
npm run build
Installing in FLUJO
- Click Add Server
- Copy & Paste Github URL into FLUJO
- Click Parse, Clone, Install, Build and Save.
Installing via Configuration Files
To integrate this MCP server with Cline or other MCP clients via configuration files:
-
Open your Cline settings:
- In VS Code, go to File -> Preferences -> Settings
- Search for "Cline MCP Settings"
- Click "Edit in settings.json"
-
Add the server configuration to the
mcpServers
object:{ "mcpServers": { "video-recognition": { "command": "node", "args": [ "/path/to/mcp-video-recognition/dist/index.js" ], "disabled": false, "autoApprove": [] } } }
-
Replace
/path/to/mcp-video-recognition/dist/index.js
with the actual path to theindex.js
file in your project directory. Use forward slashes (/) or double backslashes (\\) for the path on Windows. -
Save the settings file. Cline should automatically connect to the server.
Configuration
The server is configured using environment variables:
GOOGLE_API_KEY
(required): Your Google Gemini API keyTRANSPORT_TYPE
: Transport type to use (stdio
orsse
, defaults tostdio
)PORT
: Port number for SSE transport (defaults to 3000)LOG_LEVEL
: Logging level (verbose
,debug
,info
,warn
,error
, defaults toinfo
)
Usage
Starting the Server
With stdio Transport (Default)
GOOGLE_API_KEY=your_api_key npm start
With SSE Transport
GOOGLE_API_KEY=your_api_key TRANSPORT_TYPE=sse PORT=3000 npm start
Using the Tools
The server provides three tools that can be called by MCP clients:
Image Recognition
{
"name": "image_recognition",
"arguments": {
"filepath": "/path/to/image.jpg",
"prompt": "Describe this image in detail",
"modelname": "gemini-2.0-flash"
}
}
Audio Recognition
{
"name": "audio_recognition",
"arguments": {
"filepath": "/path/to/audio.mp3",
"prompt": "Transcribe this audio",
"modelname": "gemini-2.0-flash"
}
}
Video Recognition
{
"name": "video_recognition",
"arguments": {
"filepath": "/path/to/video.mp4",
"prompt": "Describe what happens in this video",
"modelname": "gemini-2.0-flash"
}
}
Tool Parameters
All tools accept the following parameters:
filepath
(required): Path to the media file to analyzeprompt
(optional): Custom prompt for the recognition (defaults to "Describe this content")modelname
(optional): Gemini model to use for recognition (defaults to "gemini-2.0-flash")
Development
Running in Development Mode
GOOGLE_API_KEY=your_api_key npm run dev
Project Structure
src/index.ts
: Entry pointsrc/server.ts
: MCP server implementationsrc/tools/
: Tool implementationssrc/services/
: Service implementations (Gemini API)src/types/
: Type definitionssrc/utils/
: Utility functions
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.