MCP Video Generation with Veo2

MCP Video Generation with Veo2

MCP server that exposes Google's Veo2 video generation capabilities, allowing clients to generate videos from text prompts or images.

Category
Visit Server

README

MCP Video Generation with Veo2

smithery badge

This project implements a Model Context Protocol (MCP) server that exposes Google's Veo2 video generation capabilities. It allows clients to generate videos from text prompts or images, and access the generated videos through MCP resources.

Features

  • Generate videos from text prompts
  • Generate videos from images
  • Access generated videos through MCP resources
  • Example video generation templates
  • Support for both stdio and SSE transports

Example Images

1dec9c71-07dc-4a6e-9e17-8da355d72ba1

Example Image to Video

Image to Video - from Grok generated puppy

Image to Video - from real cat

Prerequisites

  • Node.js 18 or higher
  • Google API key with access to Gemini API and Veo2 model (= You need to set up a credit card with your API key! -> Go to aistudio.google.com )

Installation

Installing in FLUJO

  1. Click Add Server
  2. Copy & Paste Github URL into FLUJO
  3. Click Parse, Clone, Install, Build and Save.

Installing via Smithery

To install mcp-video-generation-veo2 for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @mario-andreschak/mcp-veo2 --client claude

Manual Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/mcp-video-generation-veo2.git
    cd mcp-video-generation-veo2
    
  2. Install dependencies:

    npm install
    
  3. Create a .env file with your Google API key:

    cp .env.example .env
    # Edit .env and add your Google API key
    

    The .env file supports the following variables:

    • GOOGLE_API_KEY: Your Google API key (required)
    • PORT: Server port (default: 3000)
    • STORAGE_DIR: Directory for storing generated videos (default: ./generated-videos)
    • LOG_LEVEL: Logging level (default: fatal)
      • Available levels: verbose, debug, info, warn, error, fatal, none
      • For development, set to debug or info for more detailed logs
      • For production, keep as fatal to minimize console output
  4. Build the project:

    npm run build
    

Usage

Starting the Server

You can start the server with either stdio or SSE transport:

stdio Transport (Default)

npm start
# or
npm start stdio

SSE Transport

npm start sse

This will start the server on port 3000 (or the port specified in your .env file).

MCP Tools

The server exposes the following MCP tools:

generateVideoFromText

Generates a video from a text prompt.

Parameters:

  • prompt (string): The text prompt for video generation
  • config (object, optional): Configuration options
    • aspectRatio (string, optional): "16:9" or "9:16"
    • personGeneration (string, optional): "dont_allow" or "allow_adult"
    • numberOfVideos (number, optional): 1 or 2
    • durationSeconds (number, optional): Between 5 and 8
    • enhancePrompt (boolean, optional): Whether to enhance the prompt
    • negativePrompt (string, optional): Text describing what not to generate

Example:

{
  "prompt": "Panning wide shot of a serene forest with sunlight filtering through the trees, cinematic quality",
  "config": {
    "aspectRatio": "16:9",
    "personGeneration": "dont_allow",
    "durationSeconds": 8
  }
}

generateVideoFromImage

Generates a video from an image.

Parameters:

  • image (string): Base64-encoded image data
  • prompt (string, optional): Text prompt to guide the video generation
  • config (object, optional): Configuration options (same as above, but personGeneration only supports "dont_allow")

listGeneratedVideos

Lists all generated videos.

MCP Resources

The server exposes the following MCP resources:

videos://{id}

Access a generated video by its ID.

videos://templates

Access example video generation templates.

Development

Project Structure

  • src/: Source code
    • index.ts: Main entry point
    • server.ts: MCP server configuration
    • config.ts: Configuration handling
    • tools/: MCP tool implementations
    • resources/: MCP resource implementations
    • services/: External service integrations
    • utils/: Utility functions

Building

npm run build

Development Mode

npm run dev

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured