
MCP Video Generation with Veo2
MCP server that exposes Google's Veo2 video generation capabilities, allowing clients to generate videos from text prompts or images.
README
MCP Video Generation with Veo2
This project implements a Model Context Protocol (MCP) server that exposes Google's Veo2 video generation capabilities. It allows clients to generate videos from text prompts or images, and access the generated videos through MCP resources.
Features
- Generate videos from text prompts
- Generate videos from images
- Access generated videos through MCP resources
- Example video generation templates
- Support for both stdio and SSE transports
Example Images
Example Image to Video
Image to Video - from Grok generated puppy
Image to Video - from real cat
Prerequisites
- Node.js 18 or higher
- Google API key with access to Gemini API and Veo2 model (= You need to set up a credit card with your API key! -> Go to aistudio.google.com )
Installation
Installing in FLUJO
- Click Add Server
- Copy & Paste Github URL into FLUJO
- Click Parse, Clone, Install, Build and Save.
Installing via Smithery
To install mcp-video-generation-veo2 for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @mario-andreschak/mcp-veo2 --client claude
Manual Installation
-
Clone the repository:
git clone https://github.com/yourusername/mcp-video-generation-veo2.git cd mcp-video-generation-veo2
-
Install dependencies:
npm install
-
Create a
.env
file with your Google API key:cp .env.example .env # Edit .env and add your Google API key
The
.env
file supports the following variables:GOOGLE_API_KEY
: Your Google API key (required)PORT
: Server port (default: 3000)STORAGE_DIR
: Directory for storing generated videos (default: ./generated-videos)LOG_LEVEL
: Logging level (default: fatal)- Available levels: verbose, debug, info, warn, error, fatal, none
- For development, set to
debug
orinfo
for more detailed logs - For production, keep as
fatal
to minimize console output
-
Build the project:
npm run build
Usage
Starting the Server
You can start the server with either stdio or SSE transport:
stdio Transport (Default)
npm start
# or
npm start stdio
SSE Transport
npm start sse
This will start the server on port 3000 (or the port specified in your .env
file).
MCP Tools
The server exposes the following MCP tools:
generateVideoFromText
Generates a video from a text prompt.
Parameters:
prompt
(string): The text prompt for video generationconfig
(object, optional): Configuration optionsaspectRatio
(string, optional): "16:9" or "9:16"personGeneration
(string, optional): "dont_allow" or "allow_adult"numberOfVideos
(number, optional): 1 or 2durationSeconds
(number, optional): Between 5 and 8enhancePrompt
(boolean, optional): Whether to enhance the promptnegativePrompt
(string, optional): Text describing what not to generate
Example:
{
"prompt": "Panning wide shot of a serene forest with sunlight filtering through the trees, cinematic quality",
"config": {
"aspectRatio": "16:9",
"personGeneration": "dont_allow",
"durationSeconds": 8
}
}
generateVideoFromImage
Generates a video from an image.
Parameters:
image
(string): Base64-encoded image dataprompt
(string, optional): Text prompt to guide the video generationconfig
(object, optional): Configuration options (same as above, but personGeneration only supports "dont_allow")
listGeneratedVideos
Lists all generated videos.
MCP Resources
The server exposes the following MCP resources:
videos://{id}
Access a generated video by its ID.
videos://templates
Access example video generation templates.
Development
Project Structure
src/
: Source codeindex.ts
: Main entry pointserver.ts
: MCP server configurationconfig.ts
: Configuration handlingtools/
: MCP tool implementationsresources/
: MCP resource implementationsservices/
: External service integrationsutils/
: Utility functions
Building
npm run build
Development Mode
npm run dev
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.