MCP Vertica
Enables interaction with Vertica databases through SQL queries, schema management, and bulk data operations. Supports connection pooling, SSL/TLS security, and configurable permissions for database operations.
README
mcp-vertica — Local NLP + REST for Vertica (no auth)
This runs entirely on your laptop: Vertica CE via Docker, a local REST API, and a terminal NLP→SQL command powered by a local LLM (Ollama). No auth, bound on 0.0.0.0 for convenience.
⚠️ Security is intentionally disabled for local demos. Do not expose to the public internet.
Prerequisites
- Docker Desktop
- Python 3.12+
- uv (recommended) or
pip - Ollama (for local LLM)
- Mac:
brew install ollama→ollama serve &→ollama pull llama3.1:8b - Windows: install Ollama app → run “Ollama” → in PowerShell:
ollama pull llama3.1:8b
- Mac:
- (Optional) A Vertica instance; we provide Docker.
1) Start Vertica locally
docker compose up -d
# Wait until healthy (30–60s)
docker ps
Defaults:
Host: localhost
Port: 5433
Database: VMart
User: dbadmin
Password: (empty)
2) Install & configure mcp-vertica
# Mac/Linux (uv)
uv sync
# Or pip:
# python -m venv .venv && source .venv/bin/activate
# pip install -e .
Set env (Mac/Linux bash or zsh):
export VERTICA_HOST=127.0.0.1
export VERTICA_PORT=5433
export VERTICA_DATABASE=VMart
export VERTICA_USER=dbadmin
export VERTICA_PASSWORD=""
export VERTICA_CONNECTION_LIMIT=10
Windows (PowerShell):
$env:VERTICA_HOST="127.0.0.1"
$env:VERTICA_PORT="5433"
$env:VERTICA_DATABASE="VMart"
$env:VERTICA_USER="dbadmin"
$env:VERTICA_PASSWORD=""
$env:VERTICA_CONNECTION_LIMIT="10"
3) Seed ITSM/CMDB sample data
python scripts/seed_itsm.py
# Creates schemas itsm/cmdb and loads ~2k incidents + CIs/changes/relations
4) REST API (no auth)
uvx mcp-vertica serve-rest --host 0.0.0.0 --port 8001
Test:
curl http://127.0.0.1:8001/api/health
curl -X POST http://127.0.0.1:8001/api/query \
-H 'Content-Type: application/json' \
-d '{"sql":"SELECT COUNT(*) AS n FROM itsm.incident;"}'
NLP endpoint:
curl -X POST http://127.0.0.1:8001/api/nlp \
-H 'Content-Type: application/json' \
-d '{"question":"Top 5 incident categories this month", "execute": true}'
5) NLP from terminal
Start Ollama in background (if not already):
ollama serve &
ollama pull llama3.1:8b
Examples:
# Ask anything; will generate Vertica SQL and run it
uvx mcp-vertica nlp ask "Top 5 incident categories this month by count"
# Create a table (mutations allowed)
uvx mcp-vertica nlp ask "Create table staging.high_prio_incidents as P1 incidents last 7 days"
# Dry-run (just show SQL)
uvx mcp-vertica nlp ask --dry-run "List incidents joined to CI class and change window overlap"
# Similar incidents
uvx mcp-vertica nlp similar --incident-id INC000123
uvx mcp-vertica nlp similar --text "database timeout in payment service" --top-k 10
6) SSE MCP server (unchanged)
uvx mcp-vertica --port 8000 # runs SSE (0.0.0.0)
Troubleshooting
If MCP client can’t connect: uv cache clean and retry.
If Vertica not ready: docker logs vertica-ce and re-run after healthy.
If Ollama fails: ensure ollama serve is running and you pulled a model.
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.